MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpcd Unicode version

Theorem genpcd 8630
Description: Downward closure of an operation on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
genp.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpcd.2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g G h )  ->  x  e.  ( A F B ) ) )
Assertion
Ref Expression
genpcd  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( A F B )  ->  ( x  <Q  f  ->  x  e.  ( A F B ) ) ) )
Distinct variable groups:    x, y,
z, f, g, h, A    x, B, y, z, f, g, h   
x, w, v, G, y, z, f, g, h    f, F, g, h
Allowed substitution hints:    A( w, v)    B( w, v)    F( x, y, z, w, v)

Proof of Theorem genpcd
StepHypRef Expression
1 ltrelnq 8550 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4737 . . . . . 6  |-  ( x 
<Q  f  ->  ( x  e.  Q.  /\  f  e.  Q. ) )
32simpld 445 . . . . 5  |-  ( x 
<Q  f  ->  x  e. 
Q. )
4 genp.1 . . . . . . . . 9  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
5 genp.2 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
64, 5genpelv 8624 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( A F B )  <->  E. g  e.  A  E. h  e.  B  f  =  ( g G h ) ) )
76adantr 451 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( f  e.  ( A F B )  <->  E. g  e.  A  E. h  e.  B  f  =  ( g G h ) ) )
8 breq2 4027 . . . . . . . . . . . . 13  |-  ( f  =  ( g G h )  ->  (
x  <Q  f  <->  x  <Q  ( g G h ) ) )
98biimpd 198 . . . . . . . . . . . 12  |-  ( f  =  ( g G h )  ->  (
x  <Q  f  ->  x  <Q  ( g G h ) ) )
10 genpcd.2 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g G h )  ->  x  e.  ( A F B ) ) )
119, 10sylan9r 639 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  /\  f  =  (
g G h ) )  ->  ( x  <Q  f  ->  x  e.  ( A F B ) ) )
1211exp31 587 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  ( B  e. 
P.  /\  h  e.  B ) )  -> 
( x  e.  Q.  ->  ( f  =  ( g G h )  ->  ( x  <Q  f  ->  x  e.  ( A F B ) ) ) ) )
1312an4s 799 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( g  e.  A  /\  h  e.  B
) )  ->  (
x  e.  Q.  ->  ( f  =  ( g G h )  -> 
( x  <Q  f  ->  x  e.  ( A F B ) ) ) ) )
1413impancom 427 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( ( g  e.  A  /\  h  e.  B )  ->  (
f  =  ( g G h )  -> 
( x  <Q  f  ->  x  e.  ( A F B ) ) ) ) )
1514rexlimdvv 2673 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( E. g  e.  A  E. h  e.  B  f  =  ( g G h )  ->  ( x  <Q  f  ->  x  e.  ( A F B ) ) ) )
167, 15sylbid 206 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( f  e.  ( A F B )  ->  ( x  <Q  f  ->  x  e.  ( A F B ) ) ) )
1716ex 423 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  Q.  ->  ( f  e.  ( A F B )  ->  ( x  <Q  f  ->  x  e.  ( A F B ) ) ) ) )
183, 17syl5 28 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  <Q  f  ->  ( f  e.  ( A F B )  ->  ( x  <Q  f  ->  x  e.  ( A F B ) ) ) ) )
1918com34 77 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  <Q  f  ->  ( x  <Q  f  ->  ( f  e.  ( A F B )  ->  x  e.  ( A F B ) ) ) ) )
2019pm2.43d 44 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  <Q  f  ->  ( f  e.  ( A F B )  ->  x  e.  ( A F B ) ) ) )
2120com23 72 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( A F B )  ->  ( x  <Q  f  ->  x  e.  ( A F B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   E.wrex 2544   class class class wbr 4023  (class class class)co 5858    e. cmpt2 5860   Q.cnq 8474    <Q cltq 8480   P.cnp 8481
This theorem is referenced by:  genpcl  8632
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-ni 8496  df-nq 8536  df-ltnq 8542  df-np 8605
  Copyright terms: Public domain W3C validator