MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpcl Unicode version

Theorem genpcl 8632
Description: Closure of an operation on reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
genp.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpcl.3  |-  ( h  e.  Q.  ->  (
f  <Q  g  <->  ( h G f )  <Q 
( h G g ) ) )
genpcl.4  |-  ( x G y )  =  ( y G x )
genpcl.5  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g G h )  ->  x  e.  ( A F B ) ) )
Assertion
Ref Expression
genpcl  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  e.  P. )
Distinct variable groups:    x, y,
z, f, g, h, A    x, B, y, z, f, g, h, w, v    x, G   
y, w, v, G, z, f, g, h   
f, F, g    w, A, v    w, B, v   
x, F, y, w, v, h
Allowed substitution hint:    F( z)

Proof of Theorem genpcl
StepHypRef Expression
1 genp.1 . . . 4  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
2 genp.2 . . . 4  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
31, 2genpn0 8627 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  -> 
(/)  C.  ( A F B ) )
41, 2genpss 8628 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  C_  Q. )
5 vex 2791 . . . . . 6  |-  x  e. 
_V
6 vex 2791 . . . . . 6  |-  y  e. 
_V
7 genpcl.3 . . . . . 6  |-  ( h  e.  Q.  ->  (
f  <Q  g  <->  ( h G f )  <Q 
( h G g ) ) )
85, 6, 7caovord 6031 . . . . 5  |-  ( z  e.  Q.  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
9 genpcl.4 . . . . 5  |-  ( x G y )  =  ( y G x )
101, 2, 8, 9genpnnp 8629 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( A F B )  =  Q. )
11 dfpss2 3261 . . . 4  |-  ( ( A F B ) 
C.  Q.  <->  ( ( A F B )  C_  Q.  /\  -.  ( A F B )  =  Q. ) )
124, 10, 11sylanbrc 645 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  C.  Q. )
13 genpcl.5 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  g  e.  A )  /\  ( B  e.  P.  /\  h  e.  B ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g G h )  ->  x  e.  ( A F B ) ) )
141, 2, 13genpcd 8630 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( A F B )  ->  ( x  <Q  f  ->  x  e.  ( A F B ) ) ) )
1514alrimdv 1619 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( A F B )  ->  A. x ( x 
<Q  f  ->  x  e.  ( A F B ) ) ) )
16 vex 2791 . . . . . . 7  |-  z  e. 
_V
17 vex 2791 . . . . . . 7  |-  w  e. 
_V
1816, 17, 7caovord 6031 . . . . . 6  |-  ( v  e.  Q.  ->  (
z  <Q  w  <->  ( v G z )  <Q 
( v G w ) ) )
1916, 17, 9caovcom 6017 . . . . . 6  |-  ( z G w )  =  ( w G z )
201, 2, 18, 19genpnmax 8631 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( A F B )  ->  E. x  e.  ( A F B ) f  <Q  x )
)
2115, 20jcad 519 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( A F B )  ->  ( A. x
( x  <Q  f  ->  x  e.  ( A F B ) )  /\  E. x  e.  ( A F B ) f  <Q  x
) ) )
2221ralrimiv 2625 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. f  e.  ( A F B ) ( A. x ( x  <Q  f  ->  x  e.  ( A F B ) )  /\  E. x  e.  ( A F B ) f 
<Q  x ) )
233, 12, 22jca31 520 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( (/)  C.  ( A F B )  /\  ( A F B ) 
C.  Q. )  /\  A. f  e.  ( A F B ) ( A. x ( x  <Q  f  ->  x  e.  ( A F B ) )  /\  E. x  e.  ( A F B ) f  <Q  x
) ) )
24 elnp 8611 . 2  |-  ( ( A F B )  e.  P.  <->  ( ( (/)  C.  ( A F B )  /\  ( A F B )  C.  Q. )  /\  A. f  e.  ( A F B ) ( A. x
( x  <Q  f  ->  x  e.  ( A F B ) )  /\  E. x  e.  ( A F B ) f  <Q  x
) ) )
2523, 24sylibr 203 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544    C_ wss 3152    C. wpss 3153   (/)c0 3455   class class class wbr 4023  (class class class)co 5858    e. cmpt2 5860   Q.cnq 8474    <Q cltq 8480   P.cnp 8481
This theorem is referenced by:  addclpr  8642  mulclpr  8644
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-mi 8498  df-lti 8499  df-ltpq 8534  df-enq 8535  df-nq 8536  df-ltnq 8542  df-np 8605
  Copyright terms: Public domain W3C validator