MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpelv Structured version   Unicode version

Theorem genpelv 8877
Description: Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
genp.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
Assertion
Ref Expression
genpelv  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( A F B )  <->  E. g  e.  A  E. h  e.  B  C  =  ( g G h ) ) )
Distinct variable groups:    x, y,
z, g, h, A   
x, B, y, z, g, h    x, w, v, G, y, z, g, h    g, F    C, g, h
Allowed substitution hints:    A( w, v)    B( w, v)    C( x, y, z, w, v)    F( x, y, z, w, v, h)

Proof of Theorem genpelv
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 genp.1 . . . 4  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
2 genp.2 . . . 4  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
31, 2genpv 8876 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A F B )  =  { f  |  E. g  e.  A  E. h  e.  B  f  =  ( g G h ) } )
43eleq2d 2503 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( A F B )  <-> 
C  e.  { f  |  E. g  e.  A  E. h  e.  B  f  =  ( g G h ) } ) )
5 id 20 . . . . . 6  |-  ( C  =  ( g G h )  ->  C  =  ( g G h ) )
6 ovex 6106 . . . . . 6  |-  ( g G h )  e. 
_V
75, 6syl6eqel 2524 . . . . 5  |-  ( C  =  ( g G h )  ->  C  e.  _V )
87rexlimivw 2826 . . . 4  |-  ( E. h  e.  B  C  =  ( g G h )  ->  C  e.  _V )
98rexlimivw 2826 . . 3  |-  ( E. g  e.  A  E. h  e.  B  C  =  ( g G h )  ->  C  e.  _V )
10 eqeq1 2442 . . . 4  |-  ( f  =  C  ->  (
f  =  ( g G h )  <->  C  =  ( g G h ) ) )
11102rexbidv 2748 . . 3  |-  ( f  =  C  ->  ( E. g  e.  A  E. h  e.  B  f  =  ( g G h )  <->  E. g  e.  A  E. h  e.  B  C  =  ( g G h ) ) )
129, 11elab3 3089 . 2  |-  ( C  e.  { f  |  E. g  e.  A  E. h  e.  B  f  =  ( g G h ) }  <->  E. g  e.  A  E. h  e.  B  C  =  ( g G h ) )
134, 12syl6bb 253 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( C  e.  ( A F B )  <->  E. g  e.  A  E. h  e.  B  C  =  ( g G h ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2422   E.wrex 2706   _Vcvv 2956  (class class class)co 6081    e. cmpt2 6083   Q.cnq 8727   P.cnp 8734
This theorem is referenced by:  genpprecl  8878  genpss  8881  genpnnp  8882  genpcd  8883  genpnmax  8884  genpass  8886  distrlem1pr  8902  distrlem5pr  8904  1idpr  8906  ltexprlem6  8918  reclem3pr  8926  reclem4pr  8927
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-ni 8749  df-nq 8789  df-np 8858
  Copyright terms: Public domain W3C validator