MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpnnp Structured version   Unicode version

Theorem genpnnp 8874
Description: The result of an operation on positive reals is different from the set of positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
genp.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpnnp.3  |-  ( z  e.  Q.  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
genpnnp.4  |-  ( x G y )  =  ( y G x )
Assertion
Ref Expression
genpnnp  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( A F B )  =  Q. )
Distinct variable groups:    x, y,
z, A    x, B, y, z, w, v    x, G    y, w, v, G, z    w, A, v   
w, B, v    w, F, v
Allowed substitution hints:    F( x, y, z)

Proof of Theorem genpnnp
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prpssnq 8859 . . . . 5  |-  ( A  e.  P.  ->  A  C.  Q. )
2 pssnel 3685 . . . . 5  |-  ( A 
C.  Q.  ->  E. w
( w  e.  Q.  /\ 
-.  w  e.  A
) )
31, 2syl 16 . . . 4  |-  ( A  e.  P.  ->  E. w
( w  e.  Q.  /\ 
-.  w  e.  A
) )
4 prpssnq 8859 . . . . 5  |-  ( B  e.  P.  ->  B  C.  Q. )
5 pssnel 3685 . . . . 5  |-  ( B 
C.  Q.  ->  E. v
( v  e.  Q.  /\ 
-.  v  e.  B
) )
64, 5syl 16 . . . 4  |-  ( B  e.  P.  ->  E. v
( v  e.  Q.  /\ 
-.  v  e.  B
) )
73, 6anim12i 550 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. w ( w  e.  Q.  /\  -.  w  e.  A
)  /\  E. v
( v  e.  Q.  /\ 
-.  v  e.  B
) ) )
8 eeanv 1937 . . 3  |-  ( E. w E. v ( ( w  e.  Q.  /\ 
-.  w  e.  A
)  /\  ( v  e.  Q.  /\  -.  v  e.  B ) )  <->  ( E. w ( w  e. 
Q.  /\  -.  w  e.  A )  /\  E. v ( v  e. 
Q.  /\  -.  v  e.  B ) ) )
97, 8sylibr 204 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. w E. v
( ( w  e. 
Q.  /\  -.  w  e.  A )  /\  (
v  e.  Q.  /\  -.  v  e.  B
) ) )
10 prub 8863 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  P.  /\  f  e.  A )  /\  w  e.  Q. )  ->  ( -.  w  e.  A  ->  f  <Q  w ) )
11 prub 8863 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. )  ->  ( -.  v  e.  B  ->  g  <Q 
v ) )
1210, 11im2anan9 809 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
P.  /\  f  e.  A )  /\  w  e.  Q. )  /\  (
( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. ) )  ->  (
( -.  w  e.  A  /\  -.  v  e.  B )  ->  (
f  <Q  w  /\  g  <Q  v ) ) )
13 elprnq 8860 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  P.  /\  f  e.  A )  ->  f  e.  Q. )
1413anim1i 552 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  P.  /\  f  e.  A )  /\  w  e.  Q. )  ->  ( f  e. 
Q.  /\  w  e.  Q. ) )
15 elprnq 8860 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  P.  /\  g  e.  B )  ->  g  e.  Q. )
1615anim1i 552 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. )  ->  ( g  e. 
Q.  /\  v  e.  Q. ) )
17 ltsonq 8838 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  <Q  Or  Q.
18 so2nr 4519 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 
<Q  Or  Q.  /\  (
f  e.  Q.  /\  w  e.  Q. )
)  ->  -.  (
f  <Q  w  /\  w  <Q  f ) )
1917, 18mpan 652 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f  e.  Q.  /\  w  e.  Q. )  ->  -.  ( f  <Q  w  /\  w  <Q  f
) )
2019ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( f  e. 
Q.  /\  w  e.  Q. )  /\  (
g  e.  Q.  /\  v  e.  Q. )
)  /\  ( w G v )  =  ( f G g ) )  ->  -.  ( f  <Q  w  /\  w  <Q  f ) )
21 simpr 448 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( g  e.  Q.  /\  v  e.  Q. )  ->  v  e.  Q. )
22 simpl 444 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  e.  Q.  /\  w  e.  Q. )  ->  f  e.  Q. )
2321, 22anim12i 550 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( g  e.  Q.  /\  v  e.  Q. )  /\  ( f  e.  Q.  /\  w  e.  Q. )
)  ->  ( v  e.  Q.  /\  f  e. 
Q. ) )
2423ancoms 440 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( f  e.  Q.  /\  w  e.  Q. )  /\  ( g  e.  Q.  /\  v  e.  Q. )
)  ->  ( v  e.  Q.  /\  f  e. 
Q. ) )
25 vex 2951 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  w  e. 
_V
26 vex 2951 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  v  e. 
_V
27 genpnnp.3 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  Q.  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
28 vex 2951 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  f  e. 
_V
29 genpnnp.4 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x G y )  =  ( y G x )
30 vex 2951 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  g  e. 
_V
3125, 26, 27, 28, 29, 30caovord3 6252 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( v  e.  Q.  /\  f  e.  Q. )  /\  ( w G v )  =  ( f G g ) )  ->  ( w  <Q  f  <-> 
g  <Q  v ) )
3231anbi2d 685 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( v  e.  Q.  /\  f  e.  Q. )  /\  ( w G v )  =  ( f G g ) )  ->  ( ( f 
<Q  w  /\  w  <Q  f )  <->  ( f  <Q  w  /\  g  <Q 
v ) ) )
3324, 32sylan 458 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( f  e. 
Q.  /\  w  e.  Q. )  /\  (
g  e.  Q.  /\  v  e.  Q. )
)  /\  ( w G v )  =  ( f G g ) )  ->  (
( f  <Q  w  /\  w  <Q  f )  <-> 
( f  <Q  w  /\  g  <Q  v ) ) )
3420, 33mtbid 292 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( f  e. 
Q.  /\  w  e.  Q. )  /\  (
g  e.  Q.  /\  v  e.  Q. )
)  /\  ( w G v )  =  ( f G g ) )  ->  -.  ( f  <Q  w  /\  g  <Q  v ) )
3534ex 424 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f  e.  Q.  /\  w  e.  Q. )  /\  ( g  e.  Q.  /\  v  e.  Q. )
)  ->  ( (
w G v )  =  ( f G g )  ->  -.  ( f  <Q  w  /\  g  <Q  v ) ) )
3635con2d 109 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f  e.  Q.  /\  w  e.  Q. )  /\  ( g  e.  Q.  /\  v  e.  Q. )
)  ->  ( (
f  <Q  w  /\  g  <Q  v )  ->  -.  ( w G v )  =  ( f G g ) ) )
3714, 16, 36syl2an 464 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
P.  /\  f  e.  A )  /\  w  e.  Q. )  /\  (
( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. ) )  ->  (
( f  <Q  w  /\  g  <Q  v )  ->  -.  ( w G v )  =  ( f G g ) ) )
3812, 37syld 42 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
P.  /\  f  e.  A )  /\  w  e.  Q. )  /\  (
( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. ) )  ->  (
( -.  w  e.  A  /\  -.  v  e.  B )  ->  -.  ( w G v )  =  ( f G g ) ) )
3938an4s 800 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
P.  /\  f  e.  A )  /\  ( B  e.  P.  /\  g  e.  B ) )  /\  ( w  e.  Q.  /\  v  e.  Q. )
)  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B
)  ->  -.  (
w G v )  =  ( f G g ) ) )
4039ex 424 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  f  e.  A )  /\  ( B  e. 
P.  /\  g  e.  B ) )  -> 
( ( w  e. 
Q.  /\  v  e.  Q. )  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B
)  ->  -.  (
w G v )  =  ( f G g ) ) ) )
4140an4s 800 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  A  /\  g  e.  B
) )  ->  (
( w  e.  Q.  /\  v  e.  Q. )  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B )  ->  -.  ( w G v )  =  ( f G g ) ) ) )
4241ex 424 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( f  e.  A  /\  g  e.  B )  ->  (
( w  e.  Q.  /\  v  e.  Q. )  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B )  ->  -.  ( w G v )  =  ( f G g ) ) ) ) )
4342com24 83 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B )  ->  (
( w  e.  Q.  /\  v  e.  Q. )  ->  ( ( f  e.  A  /\  g  e.  B )  ->  -.  ( w G v )  =  ( f G g ) ) ) ) )
4443imp32 423 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  (
( f  e.  A  /\  g  e.  B
)  ->  -.  (
w G v )  =  ( f G g ) ) )
4544ralrimivv 2789 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  A. f  e.  A  A. g  e.  B  -.  (
w G v )  =  ( f G g ) )
46 ralnex 2707 . . . . . . . . . . . 12  |-  ( A. g  e.  B  -.  ( w G v )  =  ( f G g )  <->  -.  E. g  e.  B  ( w G v )  =  ( f G g ) )
4746ralbii 2721 . . . . . . . . . . 11  |-  ( A. f  e.  A  A. g  e.  B  -.  ( w G v )  =  ( f G g )  <->  A. f  e.  A  -.  E. g  e.  B  ( w G v )  =  ( f G g ) )
48 ralnex 2707 . . . . . . . . . . 11  |-  ( A. f  e.  A  -.  E. g  e.  B  ( w G v )  =  ( f G g )  <->  -.  E. f  e.  A  E. g  e.  B  ( w G v )  =  ( f G g ) )
4947, 48bitri 241 . . . . . . . . . 10  |-  ( A. f  e.  A  A. g  e.  B  -.  ( w G v )  =  ( f G g )  <->  -.  E. f  e.  A  E. g  e.  B  ( w G v )  =  ( f G g ) )
5045, 49sylib 189 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  -.  E. f  e.  A  E. g  e.  B  (
w G v )  =  ( f G g ) )
51 genp.1 . . . . . . . . . . 11  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
52 genp.2 . . . . . . . . . . 11  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
5351, 52genpelv 8869 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( w G v )  e.  ( A F B )  <->  E. f  e.  A  E. g  e.  B  ( w G v )  =  ( f G g ) ) )
5453adantr 452 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  (
( w G v )  e.  ( A F B )  <->  E. f  e.  A  E. g  e.  B  ( w G v )  =  ( f G g ) ) )
5550, 54mtbird 293 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  -.  ( w G v )  e.  ( A F B ) )
5655expcom 425 . . . . . . 7  |-  ( ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
)  ->  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( w G v )  e.  ( A F B ) ) )
5756ancoms 440 . . . . . 6  |-  ( ( ( w  e.  Q.  /\  v  e.  Q. )  /\  ( -.  w  e.  A  /\  -.  v  e.  B ) )  -> 
( ( A  e. 
P.  /\  B  e.  P. )  ->  -.  (
w G v )  e.  ( A F B ) ) )
5857an4s 800 . . . . 5  |-  ( ( ( w  e.  Q.  /\ 
-.  w  e.  A
)  /\  ( v  e.  Q.  /\  -.  v  e.  B ) )  -> 
( ( A  e. 
P.  /\  B  e.  P. )  ->  -.  (
w G v )  e.  ( A F B ) ) )
5952caovcl 6233 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( w G v )  e.  Q. )
60 eleq2 2496 . . . . . . . . 9  |-  ( ( A F B )  =  Q.  ->  (
( w G v )  e.  ( A F B )  <->  ( w G v )  e. 
Q. ) )
6160biimprcd 217 . . . . . . . 8  |-  ( ( w G v )  e.  Q.  ->  (
( A F B )  =  Q.  ->  ( w G v )  e.  ( A F B ) ) )
6261con3d 127 . . . . . . 7  |-  ( ( w G v )  e.  Q.  ->  ( -.  ( w G v )  e.  ( A F B )  ->  -.  ( A F B )  =  Q. )
)
6359, 62syl 16 . . . . . 6  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( -.  ( w G v )  e.  ( A F B )  ->  -.  ( A F B )  =  Q. ) )
6463ad2ant2r 728 . . . . 5  |-  ( ( ( w  e.  Q.  /\ 
-.  w  e.  A
)  /\  ( v  e.  Q.  /\  -.  v  e.  B ) )  -> 
( -.  ( w G v )  e.  ( A F B )  ->  -.  ( A F B )  =  Q. ) )
6558, 64syld 42 . . . 4  |-  ( ( ( w  e.  Q.  /\ 
-.  w  e.  A
)  /\  ( v  e.  Q.  /\  -.  v  e.  B ) )  -> 
( ( A  e. 
P.  /\  B  e.  P. )  ->  -.  ( A F B )  =  Q. ) )
6665com12 29 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( w  e.  Q.  /\  -.  w  e.  A )  /\  ( v  e.  Q.  /\ 
-.  v  e.  B
) )  ->  -.  ( A F B )  =  Q. ) )
6766exlimdvv 1647 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. w E. v ( ( w  e.  Q.  /\  -.  w  e.  A )  /\  ( v  e.  Q.  /\ 
-.  v  e.  B
) )  ->  -.  ( A F B )  =  Q. ) )
689, 67mpd 15 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( A F B )  =  Q. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   {cab 2421   A.wral 2697   E.wrex 2698    C. wpss 3313   class class class wbr 4204    Or wor 4494  (class class class)co 6073    e. cmpt2 6075   Q.cnq 8719    <Q cltq 8725   P.cnp 8726
This theorem is referenced by:  genpcl  8877
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-oadd 6720  df-omul 6721  df-er 6897  df-ni 8741  df-mi 8743  df-lti 8744  df-ltpq 8779  df-enq 8780  df-nq 8781  df-ltnq 8787  df-np 8850
  Copyright terms: Public domain W3C validator