MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpnnp Structured version   Unicode version

Theorem genpnnp 8887
Description: The result of an operation on positive reals is different from the set of positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
genp.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpnnp.3  |-  ( z  e.  Q.  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
genpnnp.4  |-  ( x G y )  =  ( y G x )
Assertion
Ref Expression
genpnnp  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( A F B )  =  Q. )
Distinct variable groups:    x, y,
z, A    x, B, y, z, w, v    x, G    y, w, v, G, z    w, A, v   
w, B, v    w, F, v
Allowed substitution hints:    F( x, y, z)

Proof of Theorem genpnnp
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prpssnq 8872 . . . . 5  |-  ( A  e.  P.  ->  A  C.  Q. )
2 pssnel 3695 . . . . 5  |-  ( A 
C.  Q.  ->  E. w
( w  e.  Q.  /\ 
-.  w  e.  A
) )
31, 2syl 16 . . . 4  |-  ( A  e.  P.  ->  E. w
( w  e.  Q.  /\ 
-.  w  e.  A
) )
4 prpssnq 8872 . . . . 5  |-  ( B  e.  P.  ->  B  C.  Q. )
5 pssnel 3695 . . . . 5  |-  ( B 
C.  Q.  ->  E. v
( v  e.  Q.  /\ 
-.  v  e.  B
) )
64, 5syl 16 . . . 4  |-  ( B  e.  P.  ->  E. v
( v  e.  Q.  /\ 
-.  v  e.  B
) )
73, 6anim12i 551 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. w ( w  e.  Q.  /\  -.  w  e.  A
)  /\  E. v
( v  e.  Q.  /\ 
-.  v  e.  B
) ) )
8 eeanv 1938 . . 3  |-  ( E. w E. v ( ( w  e.  Q.  /\ 
-.  w  e.  A
)  /\  ( v  e.  Q.  /\  -.  v  e.  B ) )  <->  ( E. w ( w  e. 
Q.  /\  -.  w  e.  A )  /\  E. v ( v  e. 
Q.  /\  -.  v  e.  B ) ) )
97, 8sylibr 205 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  E. w E. v
( ( w  e. 
Q.  /\  -.  w  e.  A )  /\  (
v  e.  Q.  /\  -.  v  e.  B
) ) )
10 prub 8876 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  P.  /\  f  e.  A )  /\  w  e.  Q. )  ->  ( -.  w  e.  A  ->  f  <Q  w ) )
11 prub 8876 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. )  ->  ( -.  v  e.  B  ->  g  <Q 
v ) )
1210, 11im2anan9 810 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
P.  /\  f  e.  A )  /\  w  e.  Q. )  /\  (
( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. ) )  ->  (
( -.  w  e.  A  /\  -.  v  e.  B )  ->  (
f  <Q  w  /\  g  <Q  v ) ) )
13 elprnq 8873 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  P.  /\  f  e.  A )  ->  f  e.  Q. )
1413anim1i 553 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  P.  /\  f  e.  A )  /\  w  e.  Q. )  ->  ( f  e. 
Q.  /\  w  e.  Q. ) )
15 elprnq 8873 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  P.  /\  g  e.  B )  ->  g  e.  Q. )
1615anim1i 553 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. )  ->  ( g  e. 
Q.  /\  v  e.  Q. ) )
17 ltsonq 8851 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  <Q  Or  Q.
18 so2nr 4530 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 
<Q  Or  Q.  /\  (
f  e.  Q.  /\  w  e.  Q. )
)  ->  -.  (
f  <Q  w  /\  w  <Q  f ) )
1917, 18mpan 653 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f  e.  Q.  /\  w  e.  Q. )  ->  -.  ( f  <Q  w  /\  w  <Q  f
) )
2019ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( f  e. 
Q.  /\  w  e.  Q. )  /\  (
g  e.  Q.  /\  v  e.  Q. )
)  /\  ( w G v )  =  ( f G g ) )  ->  -.  ( f  <Q  w  /\  w  <Q  f ) )
21 simpr 449 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( g  e.  Q.  /\  v  e.  Q. )  ->  v  e.  Q. )
22 simpl 445 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  e.  Q.  /\  w  e.  Q. )  ->  f  e.  Q. )
2321, 22anim12i 551 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( g  e.  Q.  /\  v  e.  Q. )  /\  ( f  e.  Q.  /\  w  e.  Q. )
)  ->  ( v  e.  Q.  /\  f  e. 
Q. ) )
2423ancoms 441 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( f  e.  Q.  /\  w  e.  Q. )  /\  ( g  e.  Q.  /\  v  e.  Q. )
)  ->  ( v  e.  Q.  /\  f  e. 
Q. ) )
25 vex 2961 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  w  e. 
_V
26 vex 2961 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  v  e. 
_V
27 genpnnp.3 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  Q.  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
28 vex 2961 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  f  e. 
_V
29 genpnnp.4 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x G y )  =  ( y G x )
30 vex 2961 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  g  e. 
_V
3125, 26, 27, 28, 29, 30caovord3 6263 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( v  e.  Q.  /\  f  e.  Q. )  /\  ( w G v )  =  ( f G g ) )  ->  ( w  <Q  f  <-> 
g  <Q  v ) )
3231anbi2d 686 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( v  e.  Q.  /\  f  e.  Q. )  /\  ( w G v )  =  ( f G g ) )  ->  ( ( f 
<Q  w  /\  w  <Q  f )  <->  ( f  <Q  w  /\  g  <Q 
v ) ) )
3324, 32sylan 459 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( f  e. 
Q.  /\  w  e.  Q. )  /\  (
g  e.  Q.  /\  v  e.  Q. )
)  /\  ( w G v )  =  ( f G g ) )  ->  (
( f  <Q  w  /\  w  <Q  f )  <-> 
( f  <Q  w  /\  g  <Q  v ) ) )
3420, 33mtbid 293 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( f  e. 
Q.  /\  w  e.  Q. )  /\  (
g  e.  Q.  /\  v  e.  Q. )
)  /\  ( w G v )  =  ( f G g ) )  ->  -.  ( f  <Q  w  /\  g  <Q  v ) )
3534ex 425 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f  e.  Q.  /\  w  e.  Q. )  /\  ( g  e.  Q.  /\  v  e.  Q. )
)  ->  ( (
w G v )  =  ( f G g )  ->  -.  ( f  <Q  w  /\  g  <Q  v ) ) )
3635con2d 110 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( f  e.  Q.  /\  w  e.  Q. )  /\  ( g  e.  Q.  /\  v  e.  Q. )
)  ->  ( (
f  <Q  w  /\  g  <Q  v )  ->  -.  ( w G v )  =  ( f G g ) ) )
3714, 16, 36syl2an 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
P.  /\  f  e.  A )  /\  w  e.  Q. )  /\  (
( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. ) )  ->  (
( f  <Q  w  /\  g  <Q  v )  ->  -.  ( w G v )  =  ( f G g ) ) )
3812, 37syld 43 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
P.  /\  f  e.  A )  /\  w  e.  Q. )  /\  (
( B  e.  P.  /\  g  e.  B )  /\  v  e.  Q. ) )  ->  (
( -.  w  e.  A  /\  -.  v  e.  B )  ->  -.  ( w G v )  =  ( f G g ) ) )
3938an4s 801 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
P.  /\  f  e.  A )  /\  ( B  e.  P.  /\  g  e.  B ) )  /\  ( w  e.  Q.  /\  v  e.  Q. )
)  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B
)  ->  -.  (
w G v )  =  ( f G g ) ) )
4039ex 425 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  f  e.  A )  /\  ( B  e. 
P.  /\  g  e.  B ) )  -> 
( ( w  e. 
Q.  /\  v  e.  Q. )  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B
)  ->  -.  (
w G v )  =  ( f G g ) ) ) )
4140an4s 801 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  A  /\  g  e.  B
) )  ->  (
( w  e.  Q.  /\  v  e.  Q. )  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B )  ->  -.  ( w G v )  =  ( f G g ) ) ) )
4241ex 425 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( f  e.  A  /\  g  e.  B )  ->  (
( w  e.  Q.  /\  v  e.  Q. )  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B )  ->  -.  ( w G v )  =  ( f G g ) ) ) ) )
4342com24 84 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( -.  w  e.  A  /\  -.  v  e.  B )  ->  (
( w  e.  Q.  /\  v  e.  Q. )  ->  ( ( f  e.  A  /\  g  e.  B )  ->  -.  ( w G v )  =  ( f G g ) ) ) ) )
4443imp32 424 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  (
( f  e.  A  /\  g  e.  B
)  ->  -.  (
w G v )  =  ( f G g ) ) )
4544ralrimivv 2799 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  A. f  e.  A  A. g  e.  B  -.  (
w G v )  =  ( f G g ) )
46 ralnex 2717 . . . . . . . . . . . 12  |-  ( A. g  e.  B  -.  ( w G v )  =  ( f G g )  <->  -.  E. g  e.  B  ( w G v )  =  ( f G g ) )
4746ralbii 2731 . . . . . . . . . . 11  |-  ( A. f  e.  A  A. g  e.  B  -.  ( w G v )  =  ( f G g )  <->  A. f  e.  A  -.  E. g  e.  B  ( w G v )  =  ( f G g ) )
48 ralnex 2717 . . . . . . . . . . 11  |-  ( A. f  e.  A  -.  E. g  e.  B  ( w G v )  =  ( f G g )  <->  -.  E. f  e.  A  E. g  e.  B  ( w G v )  =  ( f G g ) )
4947, 48bitri 242 . . . . . . . . . 10  |-  ( A. f  e.  A  A. g  e.  B  -.  ( w G v )  =  ( f G g )  <->  -.  E. f  e.  A  E. g  e.  B  ( w G v )  =  ( f G g ) )
5045, 49sylib 190 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  -.  E. f  e.  A  E. g  e.  B  (
w G v )  =  ( f G g ) )
51 genp.1 . . . . . . . . . . 11  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  { x  |  E. y  e.  w  E. z  e.  v  x  =  ( y G z ) } )
52 genp.2 . . . . . . . . . . 11  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
5351, 52genpelv 8882 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( w G v )  e.  ( A F B )  <->  E. f  e.  A  E. g  e.  B  ( w G v )  =  ( f G g ) ) )
5453adantr 453 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  (
( w G v )  e.  ( A F B )  <->  E. f  e.  A  E. g  e.  B  ( w G v )  =  ( f G g ) ) )
5550, 54mtbird 294 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
) )  ->  -.  ( w G v )  e.  ( A F B ) )
5655expcom 426 . . . . . . 7  |-  ( ( ( -.  w  e.  A  /\  -.  v  e.  B )  /\  (
w  e.  Q.  /\  v  e.  Q. )
)  ->  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( w G v )  e.  ( A F B ) ) )
5756ancoms 441 . . . . . 6  |-  ( ( ( w  e.  Q.  /\  v  e.  Q. )  /\  ( -.  w  e.  A  /\  -.  v  e.  B ) )  -> 
( ( A  e. 
P.  /\  B  e.  P. )  ->  -.  (
w G v )  e.  ( A F B ) ) )
5857an4s 801 . . . . 5  |-  ( ( ( w  e.  Q.  /\ 
-.  w  e.  A
)  /\  ( v  e.  Q.  /\  -.  v  e.  B ) )  -> 
( ( A  e. 
P.  /\  B  e.  P. )  ->  -.  (
w G v )  e.  ( A F B ) ) )
5952caovcl 6244 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( w G v )  e.  Q. )
60 eleq2 2499 . . . . . . . . 9  |-  ( ( A F B )  =  Q.  ->  (
( w G v )  e.  ( A F B )  <->  ( w G v )  e. 
Q. ) )
6160biimprcd 218 . . . . . . . 8  |-  ( ( w G v )  e.  Q.  ->  (
( A F B )  =  Q.  ->  ( w G v )  e.  ( A F B ) ) )
6261con3d 128 . . . . . . 7  |-  ( ( w G v )  e.  Q.  ->  ( -.  ( w G v )  e.  ( A F B )  ->  -.  ( A F B )  =  Q. )
)
6359, 62syl 16 . . . . . 6  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( -.  ( w G v )  e.  ( A F B )  ->  -.  ( A F B )  =  Q. ) )
6463ad2ant2r 729 . . . . 5  |-  ( ( ( w  e.  Q.  /\ 
-.  w  e.  A
)  /\  ( v  e.  Q.  /\  -.  v  e.  B ) )  -> 
( -.  ( w G v )  e.  ( A F B )  ->  -.  ( A F B )  =  Q. ) )
6558, 64syld 43 . . . 4  |-  ( ( ( w  e.  Q.  /\ 
-.  w  e.  A
)  /\  ( v  e.  Q.  /\  -.  v  e.  B ) )  -> 
( ( A  e. 
P.  /\  B  e.  P. )  ->  -.  ( A F B )  =  Q. ) )
6665com12 30 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( w  e.  Q.  /\  -.  w  e.  A )  /\  ( v  e.  Q.  /\ 
-.  v  e.  B
) )  ->  -.  ( A F B )  =  Q. ) )
6766exlimdvv 1648 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( E. w E. v ( ( w  e.  Q.  /\  -.  w  e.  A )  /\  ( v  e.  Q.  /\ 
-.  v  e.  B
) )  ->  -.  ( A F B )  =  Q. ) )
689, 67mpd 15 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( A F B )  =  Q. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   {cab 2424   A.wral 2707   E.wrex 2708    C. wpss 3323   class class class wbr 4215    Or wor 4505  (class class class)co 6084    e. cmpt2 6086   Q.cnq 8732    <Q cltq 8738   P.cnp 8739
This theorem is referenced by:  genpcl  8890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-recs 6636  df-rdg 6671  df-oadd 6731  df-omul 6732  df-er 6908  df-ni 8754  df-mi 8756  df-lti 8757  df-ltpq 8792  df-enq 8793  df-nq 8794  df-ltnq 8800  df-np 8863
  Copyright terms: Public domain W3C validator