Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpv Structured version   Unicode version

Theorem genpv 8876
 Description: Value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1
genp.2
Assertion
Ref Expression
genpv
Distinct variable groups:   ,,,,,,   ,,,,,,   ,,,,,,,,   ,,
Allowed substitution hints:   (,)   (,)   (,,,,,)

Proof of Theorem genpv
StepHypRef Expression
1 oveq1 6088 . . . 4
2 rexeq 2905 . . . . 5
32abbidv 2550 . . . 4
41, 3eqeq12d 2450 . . 3
5 oveq2 6089 . . . 4
6 rexeq 2905 . . . . . 6
76rexbidv 2726 . . . . 5
87abbidv 2550 . . . 4
95, 8eqeq12d 2450 . . 3
10 elprnq 8868 . . . . . . . . 9
11 elprnq 8868 . . . . . . . . 9
12 genp.2 . . . . . . . . . 10
13 eleq1 2496 . . . . . . . . . 10
1412, 13syl5ibrcom 214 . . . . . . . . 9
1510, 11, 14syl2an 464 . . . . . . . 8
1615an4s 800 . . . . . . 7
1716rexlimdvva 2837 . . . . . 6
1817abssdv 3417 . . . . 5
19 nqex 8800 . . . . 5
20 ssexg 4349 . . . . 5
2118, 19, 20sylancl 644 . . . 4
22 rexeq 2905 . . . . . 6
2322abbidv 2550 . . . . 5
24 rexeq 2905 . . . . . . 7
2524rexbidv 2726 . . . . . 6
2625abbidv 2550 . . . . 5
27 genp.1 . . . . 5
2823, 26, 27ovmpt2g 6208 . . . 4
2921, 28mpd3an3 1280 . . 3
304, 9, 29vtocl2ga 3019 . 2
31 eqeq1 2442 . . . . 5
32312rexbidv 2748 . . . 4
33 oveq1 6088 . . . . . 6
3433eqeq2d 2447 . . . . 5
35 oveq2 6089 . . . . . 6
3635eqeq2d 2447 . . . . 5
3734, 36cbvrex2v 2941 . . . 4
3832, 37syl6bb 253 . . 3
3938cbvabv 2555 . 2
4030, 39syl6eq 2484 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   wcel 1725  cab 2422  wrex 2706  cvv 2956   wss 3320  (class class class)co 6081   cmpt2 6083  cnq 8727  cnp 8734 This theorem is referenced by:  genpelv  8877  plpv  8887  mpv  8888 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-ni 8749  df-nq 8789  df-np 8858
 Copyright terms: Public domain W3C validator