MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geo2sum Structured version   Unicode version

Theorem geo2sum 12651
Description: The value of the finite geometric series  2 ^ -u 1  +  2 ^ -u 2  +...  +  2 ^
-u N, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geo2sum  |-  ( ( N  e.  NN  /\  A  e.  CC )  -> 
sum_ k  e.  ( 1 ... N ) ( A  /  (
2 ^ k ) )  =  ( A  -  ( A  / 
( 2 ^ N
) ) ) )
Distinct variable groups:    A, k    k, N

Proof of Theorem geo2sum
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 1z 10312 . . . 4  |-  1  e.  ZZ
21a1i 11 . . 3  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  1  e.  ZZ )
3 nnz 10304 . . . 4  |-  ( N  e.  NN  ->  N  e.  ZZ )
43adantr 453 . . 3  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  N  e.  ZZ )
5 simplr 733 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  k  e.  ( 1 ... N ) )  ->  A  e.  CC )
6 2nn 10134 . . . . . 6  |-  2  e.  NN
7 elfznn 11081 . . . . . . . 8  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN )
87adantl 454 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  k  e.  ( 1 ... N ) )  ->  k  e.  NN )
98nnnn0d 10275 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  k  e.  ( 1 ... N ) )  ->  k  e.  NN0 )
10 nnexpcl 11395 . . . . . 6  |-  ( ( 2  e.  NN  /\  k  e.  NN0 )  -> 
( 2 ^ k
)  e.  NN )
116, 9, 10sylancr 646 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  k  e.  ( 1 ... N ) )  ->  ( 2 ^ k )  e.  NN )
1211nncnd 10017 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  k  e.  ( 1 ... N ) )  ->  ( 2 ^ k )  e.  CC )
1311nnne0d 10045 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  k  e.  ( 1 ... N ) )  ->  ( 2 ^ k )  =/=  0 )
145, 12, 13divcld 9791 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  k  e.  ( 1 ... N ) )  ->  ( A  /  ( 2 ^ k ) )  e.  CC )
15 oveq2 6090 . . . 4  |-  ( k  =  ( j  +  1 )  ->  (
2 ^ k )  =  ( 2 ^ ( j  +  1 ) ) )
1615oveq2d 6098 . . 3  |-  ( k  =  ( j  +  1 )  ->  ( A  /  ( 2 ^ k ) )  =  ( A  /  (
2 ^ ( j  +  1 ) ) ) )
172, 2, 4, 14, 16fsumshftm 12565 . 2  |-  ( ( N  e.  NN  /\  A  e.  CC )  -> 
sum_ k  e.  ( 1 ... N ) ( A  /  (
2 ^ k ) )  =  sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( A  / 
( 2 ^ (
j  +  1 ) ) ) )
18 1m1e0 10069 . . . . 5  |-  ( 1  -  1 )  =  0
1918oveq1i 6092 . . . 4  |-  ( ( 1  -  1 ) ... ( N  - 
1 ) )  =  ( 0 ... ( N  -  1 ) )
2019sumeq1i 12493 . . 3  |-  sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( A  / 
( 2 ^ (
j  +  1 ) ) )  =  sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( A  /  ( 2 ^ ( j  +  1 ) ) )
21 nnrecre 10037 . . . . . . . . . . . 12  |-  ( 2  e.  NN  ->  (
1  /  2 )  e.  RR )
226, 21ax-mp 8 . . . . . . . . . . 11  |-  ( 1  /  2 )  e.  RR
2322recni 9103 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
24 elfznn0 11084 . . . . . . . . . . 11  |-  ( j  e.  ( 0 ... ( N  -  1 ) )  ->  j  e.  NN0 )
2524adantl 454 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  j  e.  NN0 )
26 expcl 11400 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  CC  /\  j  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ j
)  e.  CC )
2723, 25, 26sylancr 646 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( (
1  /  2 ) ^ j )  e.  CC )
28 2cn 10071 . . . . . . . . . 10  |-  2  e.  CC
2928a1i 11 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  2  e.  CC )
30 2ne0 10084 . . . . . . . . . 10  |-  2  =/=  0
3130a1i 11 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  2  =/=  0 )
3227, 29, 31divrecd 9794 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( (
( 1  /  2
) ^ j )  /  2 )  =  ( ( ( 1  /  2 ) ^
j )  x.  (
1  /  2 ) ) )
33 expp1 11389 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  CC  /\  j  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ (
j  +  1 ) )  =  ( ( ( 1  /  2
) ^ j )  x.  ( 1  / 
2 ) ) )
3423, 25, 33sylancr 646 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( (
1  /  2 ) ^ ( j  +  1 ) )  =  ( ( ( 1  /  2 ) ^
j )  x.  (
1  /  2 ) ) )
35 elfzelz 11060 . . . . . . . . . . 11  |-  ( j  e.  ( 0 ... ( N  -  1 ) )  ->  j  e.  ZZ )
3635peano2zd 10379 . . . . . . . . . 10  |-  ( j  e.  ( 0 ... ( N  -  1 ) )  ->  (
j  +  1 )  e.  ZZ )
3736adantl 454 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( j  +  1 )  e.  ZZ )
3829, 31, 37exprecd 11532 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( (
1  /  2 ) ^ ( j  +  1 ) )  =  ( 1  /  (
2 ^ ( j  +  1 ) ) ) )
3932, 34, 383eqtr2rd 2476 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 1  /  ( 2 ^ ( j  +  1 ) ) )  =  ( ( ( 1  /  2 ) ^
j )  /  2
) )
4039oveq2d 6098 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A  x.  ( 1  /  (
2 ^ ( j  +  1 ) ) ) )  =  ( A  x.  ( ( ( 1  /  2
) ^ j )  /  2 ) ) )
41 simplr 733 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  A  e.  CC )
42 peano2nn0 10261 . . . . . . . . . 10  |-  ( j  e.  NN0  ->  ( j  +  1 )  e. 
NN0 )
4325, 42syl 16 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( j  +  1 )  e. 
NN0 )
44 nnexpcl 11395 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  ( j  +  1 )  e.  NN0 )  ->  ( 2 ^ (
j  +  1 ) )  e.  NN )
456, 43, 44sylancr 646 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2 ^ ( j  +  1 ) )  e.  NN )
4645nncnd 10017 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2 ^ ( j  +  1 ) )  e.  CC )
4745nnne0d 10045 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2 ^ ( j  +  1 ) )  =/=  0 )
4841, 46, 47divrecd 9794 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A  /  ( 2 ^ ( j  +  1 ) ) )  =  ( A  x.  (
1  /  ( 2 ^ ( j  +  1 ) ) ) ) )
4927, 41, 29, 31div12d 9827 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( (
( 1  /  2
) ^ j )  x.  ( A  / 
2 ) )  =  ( A  x.  (
( ( 1  / 
2 ) ^ j
)  /  2 ) ) )
5040, 48, 493eqtr4d 2479 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  CC )  /\  j  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( A  /  ( 2 ^ ( j  +  1 ) ) )  =  ( ( ( 1  /  2 ) ^
j )  x.  ( A  /  2 ) ) )
5150sumeq2dv 12498 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  CC )  -> 
sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( A  /  (
2 ^ ( j  +  1 ) ) )  =  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( ( 1  /  2 ) ^ j )  x.  ( A  /  2
) ) )
52 fzfid 11313 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( 0 ... ( N  -  1 ) )  e.  Fin )
53 halfcl 10194 . . . . . 6  |-  ( A  e.  CC  ->  ( A  /  2 )  e.  CC )
5453adantl 454 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( A  /  2
)  e.  CC )
5552, 54, 27fsummulc1 12569 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( 1  / 
2 ) ^ j
)  x.  ( A  /  2 ) )  =  sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( ( 1  /  2 ) ^
j )  x.  ( A  /  2 ) ) )
5651, 55eqtr4d 2472 . . 3  |-  ( ( N  e.  NN  /\  A  e.  CC )  -> 
sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( A  /  (
2 ^ ( j  +  1 ) ) )  =  ( sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( 1  /  2
) ^ j )  x.  ( A  / 
2 ) ) )
5720, 56syl5eq 2481 . 2  |-  ( ( N  e.  NN  /\  A  e.  CC )  -> 
sum_ j  e.  ( ( 1  -  1 ) ... ( N  -  1 ) ) ( A  /  (
2 ^ ( j  +  1 ) ) )  =  ( sum_ j  e.  ( 0 ... ( N  - 
1 ) ) ( ( 1  /  2
) ^ j )  x.  ( A  / 
2 ) ) )
5828a1i 11 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  2  e.  CC )
5930a1i 11 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  2  =/=  0 )
6058, 59, 4exprecd 11532 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( ( 1  / 
2 ) ^ N
)  =  ( 1  /  ( 2 ^ N ) ) )
6160oveq2d 6098 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( 1  -  (
( 1  /  2
) ^ N ) )  =  ( 1  -  ( 1  / 
( 2 ^ N
) ) ) )
62 1mhlfehlf 10191 . . . . . . 7  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
6362a1i 11 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( 1  -  (
1  /  2 ) )  =  ( 1  /  2 ) )
6461, 63oveq12d 6100 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( ( 1  -  ( ( 1  / 
2 ) ^ N
) )  /  (
1  -  ( 1  /  2 ) ) )  =  ( ( 1  -  ( 1  /  ( 2 ^ N ) ) )  /  ( 1  / 
2 ) ) )
65 simpr 449 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  A  e.  CC )
6665, 58, 59divrec2d 9795 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( A  /  2
)  =  ( ( 1  /  2 )  x.  A ) )
6764, 66oveq12d 6100 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( ( ( 1  -  ( ( 1  /  2 ) ^ N ) )  / 
( 1  -  (
1  /  2 ) ) )  x.  ( A  /  2 ) )  =  ( ( ( 1  -  ( 1  /  ( 2 ^ N ) ) )  /  ( 1  / 
2 ) )  x.  ( ( 1  / 
2 )  x.  A
) ) )
68 ax-1cn 9049 . . . . . . 7  |-  1  e.  CC
69 nnnn0 10229 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  NN0 )
7069adantr 453 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  N  e.  NN0 )
71 nnexpcl 11395 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  NN )
726, 70, 71sylancr 646 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( 2 ^ N
)  e.  NN )
7372nnrecred 10046 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( 1  /  (
2 ^ N ) )  e.  RR )
7473recnd 9115 . . . . . . 7  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( 1  /  (
2 ^ N ) )  e.  CC )
75 subcl 9306 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( 1  /  (
2 ^ N ) )  e.  CC )  ->  ( 1  -  ( 1  /  (
2 ^ N ) ) )  e.  CC )
7668, 74, 75sylancr 646 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( 1  -  (
1  /  ( 2 ^ N ) ) )  e.  CC )
7723a1i 11 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( 1  /  2
)  e.  CC )
78 0re 9092 . . . . . . . 8  |-  0  e.  RR
79 halfgt0 10189 . . . . . . . 8  |-  0  <  ( 1  /  2
)
8078, 79gtneii 9186 . . . . . . 7  |-  ( 1  /  2 )  =/=  0
8180a1i 11 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( 1  /  2
)  =/=  0 )
8276, 77, 81divcld 9791 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( ( 1  -  ( 1  /  (
2 ^ N ) ) )  /  (
1  /  2 ) )  e.  CC )
8382, 77, 65mulassd 9112 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( ( ( ( 1  -  ( 1  /  ( 2 ^ N ) ) )  /  ( 1  / 
2 ) )  x.  ( 1  /  2
) )  x.  A
)  =  ( ( ( 1  -  (
1  /  ( 2 ^ N ) ) )  /  ( 1  /  2 ) )  x.  ( ( 1  /  2 )  x.  A ) ) )
8476, 77, 81divcan1d 9792 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( ( ( 1  -  ( 1  / 
( 2 ^ N
) ) )  / 
( 1  /  2
) )  x.  (
1  /  2 ) )  =  ( 1  -  ( 1  / 
( 2 ^ N
) ) ) )
8584oveq1d 6097 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( ( ( ( 1  -  ( 1  /  ( 2 ^ N ) ) )  /  ( 1  / 
2 ) )  x.  ( 1  /  2
) )  x.  A
)  =  ( ( 1  -  ( 1  /  ( 2 ^ N ) ) )  x.  A ) )
8667, 83, 853eqtr2d 2475 . . 3  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( ( ( 1  -  ( ( 1  /  2 ) ^ N ) )  / 
( 1  -  (
1  /  2 ) ) )  x.  ( A  /  2 ) )  =  ( ( 1  -  ( 1  / 
( 2 ^ N
) ) )  x.  A ) )
87 halflt1 10190 . . . . . . 7  |-  ( 1  /  2 )  <  1
8822, 87ltneii 9187 . . . . . 6  |-  ( 1  /  2 )  =/=  1
8988a1i 11 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( 1  /  2
)  =/=  1 )
9077, 89, 70geoser 12647 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  CC )  -> 
sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( 1  / 
2 ) ^ j
)  =  ( ( 1  -  ( ( 1  /  2 ) ^ N ) )  /  ( 1  -  ( 1  /  2
) ) ) )
9190oveq1d 6097 . . 3  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( 1  / 
2 ) ^ j
)  x.  ( A  /  2 ) )  =  ( ( ( 1  -  ( ( 1  /  2 ) ^ N ) )  /  ( 1  -  ( 1  /  2
) ) )  x.  ( A  /  2
) ) )
92 mulid2 9090 . . . . . . 7  |-  ( A  e.  CC  ->  (
1  x.  A )  =  A )
9392adantl 454 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( 1  x.  A
)  =  A )
9493eqcomd 2442 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  A  =  ( 1  x.  A ) )
9572nncnd 10017 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( 2 ^ N
)  e.  CC )
9672nnne0d 10045 . . . . . 6  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( 2 ^ N
)  =/=  0 )
9765, 95, 96divrec2d 9795 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( A  /  (
2 ^ N ) )  =  ( ( 1  /  ( 2 ^ N ) )  x.  A ) )
9894, 97oveq12d 6100 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( A  -  ( A  /  ( 2 ^ N ) ) )  =  ( ( 1  x.  A )  -  ( ( 1  / 
( 2 ^ N
) )  x.  A
) ) )
9968a1i 11 . . . . 5  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  1  e.  CC )
10099, 74, 65subdird 9491 . . . 4  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( ( 1  -  ( 1  /  (
2 ^ N ) ) )  x.  A
)  =  ( ( 1  x.  A )  -  ( ( 1  /  ( 2 ^ N ) )  x.  A ) ) )
10198, 100eqtr4d 2472 . . 3  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( A  -  ( A  /  ( 2 ^ N ) ) )  =  ( ( 1  -  ( 1  / 
( 2 ^ N
) ) )  x.  A ) )
10286, 91, 1013eqtr4d 2479 . 2  |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  ( sum_ j  e.  ( 0 ... ( N  -  1 ) ) ( ( 1  / 
2 ) ^ j
)  x.  ( A  /  2 ) )  =  ( A  -  ( A  /  (
2 ^ N ) ) ) )
10317, 57, 1023eqtrd 2473 1  |-  ( ( N  e.  NN  /\  A  e.  CC )  -> 
sum_ k  e.  ( 1 ... N ) ( A  /  (
2 ^ k ) )  =  ( A  -  ( A  / 
( 2 ^ N
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2600  (class class class)co 6082   CCcc 8989   RRcr 8990   0cc0 8991   1c1 8992    + caddc 8994    x. cmul 8996    - cmin 9292    / cdiv 9678   NNcn 10001   2c2 10050   NN0cn0 10222   ZZcz 10283   ...cfz 11044   ^cexp 11383   sum_csu 12480
This theorem is referenced by:  geo2lim  12653  ovollb2lem  19385  ovoliunlem1  19399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-oadd 6729  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-sup 7447  df-oi 7480  df-card 7827  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-n0 10223  df-z 10284  df-uz 10490  df-rp 10614  df-fz 11045  df-fzo 11137  df-seq 11325  df-exp 11384  df-hash 11620  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-clim 12283  df-sum 12481
  Copyright terms: Public domain W3C validator