MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geo2sum2 Structured version   Unicode version

Theorem geo2sum2 12643
Description: The value of the finite geometric series  1  +  2  +  4  +  8  +...  +  2 ^ ( N  -  1 ). (Contributed by Mario Carneiro, 7-Sep-2016.)
Assertion
Ref Expression
geo2sum2  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0..^ N ) ( 2 ^ k
)  =  ( ( 2 ^ N )  -  1 ) )
Distinct variable group:    k, N

Proof of Theorem geo2sum2
StepHypRef Expression
1 nn0z 10296 . . . 4  |-  ( N  e.  NN0  ->  N  e.  ZZ )
2 fzoval 11133 . . . 4  |-  ( N  e.  ZZ  ->  (
0..^ N )  =  ( 0 ... ( N  -  1 ) ) )
31, 2syl 16 . . 3  |-  ( N  e.  NN0  ->  ( 0..^ N )  =  ( 0 ... ( N  -  1 ) ) )
43sumeq1d 12487 . 2  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0..^ N ) ( 2 ^ k
)  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( 2 ^ k ) )
5 2cn 10062 . . . 4  |-  2  e.  CC
65a1i 11 . . 3  |-  ( N  e.  NN0  ->  2  e.  CC )
7 1ne2 10179 . . . . 5  |-  1  =/=  2
87necomi 2680 . . . 4  |-  2  =/=  1
98a1i 11 . . 3  |-  ( N  e.  NN0  ->  2  =/=  1 )
10 id 20 . . 3  |-  ( N  e.  NN0  ->  N  e. 
NN0 )
116, 9, 10geoser 12638 . 2  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( 2 ^ k )  =  ( ( 1  -  (
2 ^ N ) )  /  ( 1  -  2 ) ) )
126, 10expcld 11515 . . . . 5  |-  ( N  e.  NN0  ->  ( 2 ^ N )  e.  CC )
13 ax-1cn 9040 . . . . . 6  |-  1  e.  CC
1413a1i 11 . . . . 5  |-  ( N  e.  NN0  ->  1  e.  CC )
1512, 14subcld 9403 . . . 4  |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  -  1 )  e.  CC )
16 ax-1ne0 9051 . . . . 5  |-  1  =/=  0
1716a1i 11 . . . 4  |-  ( N  e.  NN0  ->  1  =/=  0 )
1815, 14, 17div2negd 9797 . . 3  |-  ( N  e.  NN0  ->  ( -u ( ( 2 ^ N )  -  1 )  /  -u 1
)  =  ( ( ( 2 ^ N
)  -  1 )  /  1 ) )
1912, 14negsubdi2d 9419 . . . 4  |-  ( N  e.  NN0  ->  -u (
( 2 ^ N
)  -  1 )  =  ( 1  -  ( 2 ^ N
) ) )
20 2m1e1 10087 . . . . . . 7  |-  ( 2  -  1 )  =  1
2120negeqi 9291 . . . . . 6  |-  -u (
2  -  1 )  =  -u 1
225, 13negsubdi2i 9378 . . . . . 6  |-  -u (
2  -  1 )  =  ( 1  -  2 )
2321, 22eqtr3i 2457 . . . . 5  |-  -u 1  =  ( 1  -  2 )
2423a1i 11 . . . 4  |-  ( N  e.  NN0  ->  -u 1  =  ( 1  -  2 ) )
2519, 24oveq12d 6091 . . 3  |-  ( N  e.  NN0  ->  ( -u ( ( 2 ^ N )  -  1 )  /  -u 1
)  =  ( ( 1  -  ( 2 ^ N ) )  /  ( 1  -  2 ) ) )
2615div1d 9774 . . 3  |-  ( N  e.  NN0  ->  ( ( ( 2 ^ N
)  -  1 )  /  1 )  =  ( ( 2 ^ N )  -  1 ) )
2718, 25, 263eqtr3d 2475 . 2  |-  ( N  e.  NN0  ->  ( ( 1  -  ( 2 ^ N ) )  /  ( 1  -  2 ) )  =  ( ( 2 ^ N )  -  1 ) )
284, 11, 273eqtrd 2471 1  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0..^ N ) ( 2 ^ k
)  =  ( ( 2 ^ N )  -  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725    =/= wne 2598  (class class class)co 6073   CCcc 8980   0cc0 8982   1c1 8983    - cmin 9283   -ucneg 9284    / cdiv 9669   2c2 10041   NN0cn0 10213   ZZcz 10274   ...cfz 11035  ..^cfzo 11127   ^cexp 11374   sum_csu 12471
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472
  Copyright terms: Public domain W3C validator