Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  geomcau Unicode version

Theorem geomcau 26578
Description: If the distance between consecutive points in a sequence is bounded by a geometric sequence, then the sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2  |-  ( ph  ->  D  e.  ( Met `  X ) )
lmclim2.3  |-  ( ph  ->  F : NN --> X )
geomcau.4  |-  ( ph  ->  A  e.  RR )
geomcau.5  |-  ( ph  ->  B  e.  RR+ )
geomcau.6  |-  ( ph  ->  B  <  1 )
geomcau.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) D ( F `  ( k  +  1 ) ) )  <_ 
( A  x.  ( B ^ k ) ) )
Assertion
Ref Expression
geomcau  |-  ( ph  ->  F  e.  ( Cau `  D ) )
Distinct variable groups:    D, k    k, F    k, X    A, k    B, k    ph, k

Proof of Theorem geomcau
Dummy variables  j  n  x  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 10279 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2 1z 10069 . . . . . . 7  |-  1  e.  ZZ
32a1i 10 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
4 geomcau.5 . . . . . . . 8  |-  ( ph  ->  B  e.  RR+ )
54rpcnd 10408 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
64rpred 10406 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR )
74rpge0d 10410 . . . . . . . . 9  |-  ( ph  ->  0  <_  B )
86, 7absidd 11921 . . . . . . . 8  |-  ( ph  ->  ( abs `  B
)  =  B )
9 geomcau.6 . . . . . . . 8  |-  ( ph  ->  B  <  1 )
108, 9eqbrtrd 4059 . . . . . . 7  |-  ( ph  ->  ( abs `  B
)  <  1 )
115, 10expcnv 12338 . . . . . 6  |-  ( ph  ->  ( m  e.  NN0  |->  ( B ^ m ) )  ~~>  0 )
12 geomcau.4 . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
13 1re 8853 . . . . . . . . . 10  |-  1  e.  RR
14 resubcl 9127 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  B  e.  RR )  ->  ( 1  -  B
)  e.  RR )
1513, 6, 14sylancr 644 . . . . . . . . 9  |-  ( ph  ->  ( 1  -  B
)  e.  RR )
16 posdif 9283 . . . . . . . . . . 11  |-  ( ( B  e.  RR  /\  1  e.  RR )  ->  ( B  <  1  <->  0  <  ( 1  -  B ) ) )
176, 13, 16sylancl 643 . . . . . . . . . 10  |-  ( ph  ->  ( B  <  1  <->  0  <  ( 1  -  B ) ) )
189, 17mpbid 201 . . . . . . . . 9  |-  ( ph  ->  0  <  ( 1  -  B ) )
1915, 18elrpd 10404 . . . . . . . 8  |-  ( ph  ->  ( 1  -  B
)  e.  RR+ )
2012, 19rerpdivcld 10433 . . . . . . 7  |-  ( ph  ->  ( A  /  (
1  -  B ) )  e.  RR )
2120recnd 8877 . . . . . 6  |-  ( ph  ->  ( A  /  (
1  -  B ) )  e.  CC )
22 nnex 9768 . . . . . . . 8  |-  NN  e.  _V
2322mptex 5762 . . . . . . 7  |-  ( m  e.  NN  |->  ( ( B ^ m )  x.  ( A  / 
( 1  -  B
) ) ) )  e.  _V
2423a1i 10 . . . . . 6  |-  ( ph  ->  ( m  e.  NN  |->  ( ( B ^
m )  x.  ( A  /  ( 1  -  B ) ) ) )  e.  _V )
25 nnnn0 9988 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  NN0 )
2625adantl 452 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  n  e. 
NN0 )
27 oveq2 5882 . . . . . . . . 9  |-  ( m  =  n  ->  ( B ^ m )  =  ( B ^ n
) )
28 eqid 2296 . . . . . . . . 9  |-  ( m  e.  NN0  |->  ( B ^ m ) )  =  ( m  e. 
NN0  |->  ( B ^
m ) )
29 ovex 5899 . . . . . . . . 9  |-  ( B ^ n )  e. 
_V
3027, 28, 29fvmpt 5618 . . . . . . . 8  |-  ( n  e.  NN0  ->  ( ( m  e.  NN0  |->  ( B ^ m ) ) `
 n )  =  ( B ^ n
) )
3126, 30syl 15 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( m  e.  NN0  |->  ( B ^ m ) ) `
 n )  =  ( B ^ n
) )
32 nnz 10061 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  ZZ )
33 rpexpcl 11138 . . . . . . . . 9  |-  ( ( B  e.  RR+  /\  n  e.  ZZ )  ->  ( B ^ n )  e.  RR+ )
344, 32, 33syl2an 463 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( B ^ n )  e.  RR+ )
3534rpcnd 10408 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( B ^ n )  e.  CC )
3631, 35eqeltrd 2370 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( m  e.  NN0  |->  ( B ^ m ) ) `
 n )  e.  CC )
3721adantr 451 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( A  /  ( 1  -  B ) )  e.  CC )
3835, 37mulcomd 8872 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( B ^ n )  x.  ( A  / 
( 1  -  B
) ) )  =  ( ( A  / 
( 1  -  B
) )  x.  ( B ^ n ) ) )
3927oveq1d 5889 . . . . . . . . 9  |-  ( m  =  n  ->  (
( B ^ m
)  x.  ( A  /  ( 1  -  B ) ) )  =  ( ( B ^ n )  x.  ( A  /  (
1  -  B ) ) ) )
40 eqid 2296 . . . . . . . . 9  |-  ( m  e.  NN  |->  ( ( B ^ m )  x.  ( A  / 
( 1  -  B
) ) ) )  =  ( m  e.  NN  |->  ( ( B ^ m )  x.  ( A  /  (
1  -  B ) ) ) )
41 ovex 5899 . . . . . . . . 9  |-  ( ( B ^ n )  x.  ( A  / 
( 1  -  B
) ) )  e. 
_V
4239, 40, 41fvmpt 5618 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( m  e.  NN  |->  ( ( B ^
m )  x.  ( A  /  ( 1  -  B ) ) ) ) `  n )  =  ( ( B ^ n )  x.  ( A  /  (
1  -  B ) ) ) )
4342adantl 452 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( m  e.  NN  |->  ( ( B ^ m
)  x.  ( A  /  ( 1  -  B ) ) ) ) `  n )  =  ( ( B ^ n )  x.  ( A  /  (
1  -  B ) ) ) )
4431oveq2d 5890 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( A  /  ( 1  -  B ) )  x.  ( ( m  e.  NN0  |->  ( B ^ m ) ) `
 n ) )  =  ( ( A  /  ( 1  -  B ) )  x.  ( B ^ n
) ) )
4538, 43, 443eqtr4d 2338 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( m  e.  NN  |->  ( ( B ^ m
)  x.  ( A  /  ( 1  -  B ) ) ) ) `  n )  =  ( ( A  /  ( 1  -  B ) )  x.  ( ( m  e. 
NN0  |->  ( B ^
m ) ) `  n ) ) )
461, 3, 11, 21, 24, 36, 45climmulc2 12126 . . . . 5  |-  ( ph  ->  ( m  e.  NN  |->  ( ( B ^
m )  x.  ( A  /  ( 1  -  B ) ) ) )  ~~>  ( ( A  /  ( 1  -  B ) )  x.  0 ) )
4721mul01d 9027 . . . . 5  |-  ( ph  ->  ( ( A  / 
( 1  -  B
) )  x.  0 )  =  0 )
4846, 47breqtrd 4063 . . . 4  |-  ( ph  ->  ( m  e.  NN  |->  ( ( B ^
m )  x.  ( A  /  ( 1  -  B ) ) ) )  ~~>  0 )
4934rpred 10406 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( B ^ n )  e.  RR )
5020adantr 451 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( A  /  ( 1  -  B ) )  e.  RR )
5149, 50remulcld 8879 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( B ^ n )  x.  ( A  / 
( 1  -  B
) ) )  e.  RR )
5251recnd 8877 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( B ^ n )  x.  ( A  / 
( 1  -  B
) ) )  e.  CC )
531, 3, 24, 43, 52clim0c 11997 . . . 4  |-  ( ph  ->  ( ( m  e.  NN  |->  ( ( B ^ m )  x.  ( A  /  (
1  -  B ) ) ) )  ~~>  0  <->  A. x  e.  RR+  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )
( abs `  (
( B ^ n
)  x.  ( A  /  ( 1  -  B ) ) ) )  <  x ) )
5448, 53mpbid 201 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. n  e.  ( ZZ>= `  j ) ( abs `  ( ( B ^
n )  x.  ( A  /  ( 1  -  B ) ) ) )  <  x )
55 nnz 10061 . . . . . . . 8  |-  ( j  e.  NN  ->  j  e.  ZZ )
5655adantl 452 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  j  e.  ZZ )
57 uzid 10258 . . . . . . 7  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
58 oveq2 5882 . . . . . . . . . . 11  |-  ( n  =  j  ->  ( B ^ n )  =  ( B ^ j
) )
5958oveq1d 5889 . . . . . . . . . 10  |-  ( n  =  j  ->  (
( B ^ n
)  x.  ( A  /  ( 1  -  B ) ) )  =  ( ( B ^ j )  x.  ( A  /  (
1  -  B ) ) ) )
6059fveq2d 5545 . . . . . . . . 9  |-  ( n  =  j  ->  ( abs `  ( ( B ^ n )  x.  ( A  /  (
1  -  B ) ) ) )  =  ( abs `  (
( B ^ j
)  x.  ( A  /  ( 1  -  B ) ) ) ) )
6160breq1d 4049 . . . . . . . 8  |-  ( n  =  j  ->  (
( abs `  (
( B ^ n
)  x.  ( A  /  ( 1  -  B ) ) ) )  <  x  <->  ( abs `  ( ( B ^
j )  x.  ( A  /  ( 1  -  B ) ) ) )  <  x ) )
6261rspcv 2893 . . . . . . 7  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. n  e.  ( ZZ>= `  j ) ( abs `  ( ( B ^
n )  x.  ( A  /  ( 1  -  B ) ) ) )  <  x  -> 
( abs `  (
( B ^ j
)  x.  ( A  /  ( 1  -  B ) ) ) )  <  x ) )
6356, 57, 623syl 18 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. n  e.  ( ZZ>=
`  j ) ( abs `  ( ( B ^ n )  x.  ( A  / 
( 1  -  B
) ) ) )  <  x  ->  ( abs `  ( ( B ^ j )  x.  ( A  /  (
1  -  B ) ) ) )  < 
x ) )
64 lmclim2.2 . . . . . . . . . . . . 13  |-  ( ph  ->  D  e.  ( Met `  X ) )
6564adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  D  e.  ( Met `  X
) )
66 lmclim2.3 . . . . . . . . . . . . 13  |-  ( ph  ->  F : NN --> X )
67 simpl 443 . . . . . . . . . . . . 13  |-  ( ( j  e.  NN  /\  n  e.  ( ZZ>= `  j ) )  -> 
j  e.  NN )
68 ffvelrn 5679 . . . . . . . . . . . . 13  |-  ( ( F : NN --> X  /\  j  e.  NN )  ->  ( F `  j
)  e.  X )
6966, 67, 68syl2an 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  ( F `  j )  e.  X )
701uztrn2 10261 . . . . . . . . . . . . 13  |-  ( ( j  e.  NN  /\  n  e.  ( ZZ>= `  j ) )  ->  n  e.  NN )
71 ffvelrn 5679 . . . . . . . . . . . . 13  |-  ( ( F : NN --> X  /\  n  e.  NN )  ->  ( F `  n
)  e.  X )
7266, 70, 71syl2an 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  ( F `  n )  e.  X )
73 metcl 17913 . . . . . . . . . . . 12  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  n )  e.  X )  ->  (
( F `  j
) D ( F `
 n ) )  e.  RR )
7465, 69, 72, 73syl3anc 1182 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  (
( F `  j
) D ( F `
 n ) )  e.  RR )
75 eqid 2296 . . . . . . . . . . . . 13  |-  ( ZZ>= `  j )  =  (
ZZ>= `  j )
76 nnnn0 9988 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  j  e.  NN0 )
7776ad2antrl 708 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  j  e.  NN0 )
7877nn0zd 10131 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  j  e.  ZZ )
79 oveq2 5882 . . . . . . . . . . . . . . . 16  |-  ( m  =  k  ->  ( B ^ m )  =  ( B ^ k
) )
8079oveq2d 5890 . . . . . . . . . . . . . . 15  |-  ( m  =  k  ->  ( A  x.  ( B ^ m ) )  =  ( A  x.  ( B ^ k ) ) )
81 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( ZZ>= `  j
)  |->  ( A  x.  ( B ^ m ) ) )  =  ( m  e.  ( ZZ>= `  j )  |->  ( A  x.  ( B ^
m ) ) )
82 ovex 5899 . . . . . . . . . . . . . . 15  |-  ( A  x.  ( B ^
k ) )  e. 
_V
8380, 81, 82fvmpt 5618 . . . . . . . . . . . . . 14  |-  ( k  e.  ( ZZ>= `  j
)  ->  ( (
m  e.  ( ZZ>= `  j )  |->  ( A  x.  ( B ^
m ) ) ) `
 k )  =  ( A  x.  ( B ^ k ) ) )
8483adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( m  e.  ( ZZ>= `  j
)  |->  ( A  x.  ( B ^ m ) ) ) `  k
)  =  ( A  x.  ( B ^
k ) ) )
8512ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  A  e.  RR )
866ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  B  e.  RR )
87 eluznn0 10304 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  NN0  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN0 )
8877, 87sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  k  e.  NN0 )
8986, 88reexpcld 11278 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( B ^
k )  e.  RR )
9085, 89remulcld 8879 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( A  x.  ( B ^ k ) )  e.  RR )
9190recnd 8877 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( A  x.  ( B ^ k ) )  e.  CC )
9212recnd 8877 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  CC )
9392adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  A  e.  CC )
945adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  B  e.  CC )
9510adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  ( abs `  B )  <  1 )
96 eqid 2296 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  ( ZZ>= `  j
)  |->  ( B ^
m ) )  =  ( m  e.  (
ZZ>= `  j )  |->  ( B ^ m ) )
97 ovex 5899 . . . . . . . . . . . . . . . . . 18  |-  ( B ^ k )  e. 
_V
9879, 96, 97fvmpt 5618 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ZZ>= `  j
)  ->  ( (
m  e.  ( ZZ>= `  j )  |->  ( B ^ m ) ) `
 k )  =  ( B ^ k
) )
9998adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( m  e.  ( ZZ>= `  j
)  |->  ( B ^
m ) ) `  k )  =  ( B ^ k ) )
10094, 95, 77, 99geolim2 12343 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  seq  j (  +  , 
( m  e.  (
ZZ>= `  j )  |->  ( B ^ m ) ) )  ~~>  ( ( B ^ j )  /  ( 1  -  B ) ) )
10189recnd 8877 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( B ^
k )  e.  CC )
10299, 101eqeltrd 2370 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( m  e.  ( ZZ>= `  j
)  |->  ( B ^
m ) ) `  k )  e.  CC )
10399oveq2d 5890 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( A  x.  ( ( m  e.  ( ZZ>= `  j )  |->  ( B ^ m
) ) `  k
) )  =  ( A  x.  ( B ^ k ) ) )
10484, 103eqtr4d 2331 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( m  e.  ( ZZ>= `  j
)  |->  ( A  x.  ( B ^ m ) ) ) `  k
)  =  ( A  x.  ( ( m  e.  ( ZZ>= `  j
)  |->  ( B ^
m ) ) `  k ) ) )
10575, 78, 93, 100, 102, 104isermulc2 12147 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  seq  j (  +  , 
( m  e.  (
ZZ>= `  j )  |->  ( A  x.  ( B ^ m ) ) ) )  ~~>  ( A  x.  ( ( B ^ j )  / 
( 1  -  B
) ) ) )
1064adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  B  e.  RR+ )
107106, 78rpexpcld 11284 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  ( B ^ j )  e.  RR+ )
108107rpcnd 10408 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  ( B ^ j )  e.  CC )
10915recnd 8877 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  -  B
)  e.  CC )
110109adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  (
1  -  B )  e.  CC )
11119rpne0d 10411 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  -  B
)  =/=  0 )
112111adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  (
1  -  B )  =/=  0 )
11393, 108, 110, 112div12d 9588 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  ( A  x.  ( ( B ^ j )  / 
( 1  -  B
) ) )  =  ( ( B ^
j )  x.  ( A  /  ( 1  -  B ) ) ) )
114105, 113breqtrd 4063 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  seq  j (  +  , 
( m  e.  (
ZZ>= `  j )  |->  ( A  x.  ( B ^ m ) ) ) )  ~~>  ( ( B ^ j )  x.  ( A  / 
( 1  -  B
) ) ) )
11575, 78, 84, 91, 114isumclim 12236 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  sum_ k  e.  ( ZZ>= `  j )
( A  x.  ( B ^ k ) )  =  ( ( B ^ j )  x.  ( A  /  (
1  -  B ) ) ) )
116 seqex 11064 . . . . . . . . . . . . . . 15  |-  seq  j
(  +  ,  ( m  e.  ( ZZ>= `  j )  |->  ( A  x.  ( B ^
m ) ) ) )  e.  _V
117 ovex 5899 . . . . . . . . . . . . . . 15  |-  ( A  x.  ( ( B ^ j )  / 
( 1  -  B
) ) )  e. 
_V
118116, 117breldm 4899 . . . . . . . . . . . . . 14  |-  (  seq  j (  +  , 
( m  e.  (
ZZ>= `  j )  |->  ( A  x.  ( B ^ m ) ) ) )  ~~>  ( A  x.  ( ( B ^ j )  / 
( 1  -  B
) ) )  ->  seq  j (  +  , 
( m  e.  (
ZZ>= `  j )  |->  ( A  x.  ( B ^ m ) ) ) )  e.  dom  ~~>  )
119105, 118syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  seq  j (  +  , 
( m  e.  (
ZZ>= `  j )  |->  ( A  x.  ( B ^ m ) ) ) )  e.  dom  ~~>  )
12075, 78, 84, 90, 119isumrecl 12244 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  sum_ k  e.  ( ZZ>= `  j )
( A  x.  ( B ^ k ) )  e.  RR )
121115, 120eqeltrrd 2371 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  (
( B ^ j
)  x.  ( A  /  ( 1  -  B ) ) )  e.  RR )
122121recnd 8877 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  (
( B ^ j
)  x.  ( A  /  ( 1  -  B ) ) )  e.  CC )
123122abscld 11934 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  ( abs `  ( ( B ^ j )  x.  ( A  /  (
1  -  B ) ) ) )  e.  RR )
124 fzfid 11051 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  (
j ... ( n  - 
1 ) )  e. 
Fin )
125 simpll 730 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  ( j ... ( n  -  1 ) ) )  ->  ph )
126 elfzuz 10810 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( j ... ( n  -  1 ) )  ->  k  e.  ( ZZ>= `  j )
)
127 simprl 732 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  j  e.  NN )
1281uztrn2 10261 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
129127, 128sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  k  e.  NN )
130126, 129sylan2 460 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  ( j ... ( n  -  1 ) ) )  ->  k  e.  NN )
13164adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  D  e.  ( Met `  X
) )
132 ffvelrn 5679 . . . . . . . . . . . . . . . . 17  |-  ( ( F : NN --> X  /\  k  e.  NN )  ->  ( F `  k
)  e.  X )
13366, 132sylan 457 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  X )
134 peano2nn 9774 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
135 ffvelrn 5679 . . . . . . . . . . . . . . . . 17  |-  ( ( F : NN --> X  /\  ( k  +  1 )  e.  NN )  ->  ( F `  ( k  +  1 ) )  e.  X
)
13666, 134, 135syl2an 463 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 ( k  +  1 ) )  e.  X )
137 metcl 17913 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  k )  e.  X  /\  ( F `  ( k  +  1 ) )  e.  X )  -> 
( ( F `  k ) D ( F `  ( k  +  1 ) ) )  e.  RR )
138131, 133, 136, 137syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) D ( F `  ( k  +  1 ) ) )  e.  RR )
139125, 130, 138syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  ( j ... ( n  -  1 ) ) )  ->  ( ( F `  k ) D ( F `  ( k  +  1 ) ) )  e.  RR )
140124, 139fsumrecl 12223 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  sum_ k  e.  ( j ... (
n  -  1 ) ) ( ( F `
 k ) D ( F `  (
k  +  1 ) ) )  e.  RR )
141 simprr 733 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  n  e.  ( ZZ>= `  j )
)
142 elfzuz 10810 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( j ... n )  ->  k  e.  ( ZZ>= `  j )
)
143 simpll 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ph )
144143, 129, 133syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( F `  k )  e.  X
)
145142, 144sylan2 460 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  ( j ... n ) )  ->  ( F `  k )  e.  X
)
14665, 141, 145mettrifi 26576 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  (
( F `  j
) D ( F `
 n ) )  <_  sum_ k  e.  ( j ... ( n  -  1 ) ) ( ( F `  k ) D ( F `  ( k  +  1 ) ) ) )
147126, 90sylan2 460 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  ( j ... ( n  -  1 ) ) )  ->  ( A  x.  ( B ^ k
) )  e.  RR )
148124, 147fsumrecl 12223 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  sum_ k  e.  ( j ... (
n  -  1 ) ) ( A  x.  ( B ^ k ) )  e.  RR )
149 geomcau.7 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  k ) D ( F `  ( k  +  1 ) ) )  <_ 
( A  x.  ( B ^ k ) ) )
150125, 130, 149syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  ( j ... ( n  -  1 ) ) )  ->  ( ( F `  k ) D ( F `  ( k  +  1 ) ) )  <_ 
( A  x.  ( B ^ k ) ) )
151124, 139, 147, 150fsumle 12273 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  sum_ k  e.  ( j ... (
n  -  1 ) ) ( ( F `
 k ) D ( F `  (
k  +  1 ) ) )  <_  sum_ k  e.  ( j ... (
n  -  1 ) ) ( A  x.  ( B ^ k ) ) )
152 fzssuz 10848 . . . . . . . . . . . . . . . 16  |-  ( j ... ( n  - 
1 ) )  C_  ( ZZ>= `  j )
153152a1i 10 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  (
j ... ( n  - 
1 ) )  C_  ( ZZ>= `  j )
)
154 0re 8854 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
155154a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN )  ->  0  e.  RR )
156 nnz 10061 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN  ->  k  e.  ZZ )
157 rpexpcl 11138 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  RR+  /\  k  e.  ZZ )  ->  ( B ^ k )  e.  RR+ )
1584, 156, 157syl2an 463 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  NN )  ->  ( B ^ k )  e.  RR+ )
159138, 158rerpdivcld 10433 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  k
) D ( F `
 ( k  +  1 ) ) )  /  ( B ^
k ) )  e.  RR )
16012adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  RR )
161 metge0 17926 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( Met `  X )  /\  ( F `  k )  e.  X  /\  ( F `  ( k  +  1 ) )  e.  X )  -> 
0  <_  ( ( F `  k ) D ( F `  ( k  +  1 ) ) ) )
162131, 133, 136, 161syl3anc 1182 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( F `  k ) D ( F `  ( k  +  1 ) ) ) )
163138, 158, 162divge0d 10442 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( ( ( F `
 k ) D ( F `  (
k  +  1 ) ) )  /  ( B ^ k ) ) )
164138, 160, 158ledivmul2d 10456 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( ( F `  k ) D ( F `  ( k  +  1 ) ) )  /  ( B ^ k ) )  <_  A  <->  ( ( F `  k ) D ( F `  ( k  +  1 ) ) )  <_ 
( A  x.  ( B ^ k ) ) ) )
165149, 164mpbird 223 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( ( F `  k
) D ( F `
 ( k  +  1 ) ) )  /  ( B ^
k ) )  <_  A )
166155, 159, 160, 163, 165letrd 8989 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_  A )
167143, 129, 166syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  0  <_  A
)
168143, 129, 158syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( B ^
k )  e.  RR+ )
169168rpge0d 10410 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  0  <_  ( B ^ k ) )
17085, 89, 167, 169mulge0d 9365 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  0  <_  ( A  x.  ( B ^ k ) ) )
17175, 78, 124, 153, 84, 90, 170, 119isumless 12320 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  sum_ k  e.  ( j ... (
n  -  1 ) ) ( A  x.  ( B ^ k ) )  <_  sum_ k  e.  ( ZZ>= `  j )
( A  x.  ( B ^ k ) ) )
172140, 148, 120, 151, 171letrd 8989 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  sum_ k  e.  ( j ... (
n  -  1 ) ) ( ( F `
 k ) D ( F `  (
k  +  1 ) ) )  <_  sum_ k  e.  ( ZZ>= `  j )
( A  x.  ( B ^ k ) ) )
17374, 140, 120, 146, 172letrd 8989 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  (
( F `  j
) D ( F `
 n ) )  <_  sum_ k  e.  (
ZZ>= `  j ) ( A  x.  ( B ^ k ) ) )
174173, 115breqtrd 4063 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  (
( F `  j
) D ( F `
 n ) )  <_  ( ( B ^ j )  x.  ( A  /  (
1  -  B ) ) ) )
175121leabsd 11913 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  (
( B ^ j
)  x.  ( A  /  ( 1  -  B ) ) )  <_  ( abs `  (
( B ^ j
)  x.  ( A  /  ( 1  -  B ) ) ) ) )
17674, 121, 123, 174, 175letrd 8989 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  NN  /\  n  e.  ( ZZ>= `  j )
) )  ->  (
( F `  j
) D ( F `
 n ) )  <_  ( abs `  (
( B ^ j
)  x.  ( A  /  ( 1  -  B ) ) ) ) )
177176adantlr 695 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  ->  ( ( F `
 j ) D ( F `  n
) )  <_  ( abs `  ( ( B ^ j )  x.  ( A  /  (
1  -  B ) ) ) ) )
17874adantlr 695 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  ->  ( ( F `
 j ) D ( F `  n
) )  e.  RR )
179123adantlr 695 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  ->  ( abs `  (
( B ^ j
)  x.  ( A  /  ( 1  -  B ) ) ) )  e.  RR )
180 rpre 10376 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  e.  RR )
181180ad2antlr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  ->  x  e.  RR )
182 lelttr 8928 . . . . . . . . . 10  |-  ( ( ( ( F `  j ) D ( F `  n ) )  e.  RR  /\  ( abs `  ( ( B ^ j )  x.  ( A  / 
( 1  -  B
) ) ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( ( F `
 j ) D ( F `  n
) )  <_  ( abs `  ( ( B ^ j )  x.  ( A  /  (
1  -  B ) ) ) )  /\  ( abs `  ( ( B ^ j )  x.  ( A  / 
( 1  -  B
) ) ) )  <  x )  -> 
( ( F `  j ) D ( F `  n ) )  <  x ) )
183178, 179, 181, 182syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( ( F `  j
) D ( F `
 n ) )  <_  ( abs `  (
( B ^ j
)  x.  ( A  /  ( 1  -  B ) ) ) )  /\  ( abs `  ( ( B ^
j )  x.  ( A  /  ( 1  -  B ) ) ) )  <  x )  ->  ( ( F `
 j ) D ( F `  n
) )  <  x
) )
184177, 183mpand 656 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  n  e.  ( ZZ>= `  j ) ) )  ->  ( ( abs `  ( ( B ^
j )  x.  ( A  /  ( 1  -  B ) ) ) )  <  x  -> 
( ( F `  j ) D ( F `  n ) )  <  x ) )
185184anassrs 629 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  n  e.  ( ZZ>=
`  j ) )  ->  ( ( abs `  ( ( B ^
j )  x.  ( A  /  ( 1  -  B ) ) ) )  <  x  -> 
( ( F `  j ) D ( F `  n ) )  <  x ) )
186185ralrimdva 2646 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  (
( abs `  (
( B ^ j
)  x.  ( A  /  ( 1  -  B ) ) ) )  <  x  ->  A. n  e.  ( ZZ>=
`  j ) ( ( F `  j
) D ( F `
 n ) )  <  x ) )
18763, 186syld 40 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. n  e.  ( ZZ>=
`  j ) ( abs `  ( ( B ^ n )  x.  ( A  / 
( 1  -  B
) ) ) )  <  x  ->  A. n  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  n ) )  <  x ) )
188187reximdva 2668 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  NN  A. n  e.  ( ZZ>= `  j )
( abs `  (
( B ^ n
)  x.  ( A  /  ( 1  -  B ) ) ) )  <  x  ->  E. j  e.  NN  A. n  e.  ( ZZ>= `  j ) ( ( F `  j ) D ( F `  n ) )  < 
x ) )
189188ralimdva 2634 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  NN  A. n  e.  ( ZZ>= `  j ) ( abs `  ( ( B ^
n )  x.  ( A  /  ( 1  -  B ) ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  n ) )  <  x ) )
19054, 189mpd 14 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. n  e.  ( ZZ>= `  j ) ( ( F `  j ) D ( F `  n ) )  < 
x )
191 metxmet 17915 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
19264, 191syl 15 . . 3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
193 eqidd 2297 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( F `
 n )  =  ( F `  n
) )
194 eqidd 2297 . . 3  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  =  ( F `  j
) )
1951, 192, 3, 193, 194, 66iscauf 18722 . 2  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. j  e.  NN  A. n  e.  ( ZZ>= `  j )
( ( F `  j ) D ( F `  n ) )  <  x ) )
196190, 195mpbird 223 1  |-  ( ph  ->  F  e.  ( Cau `  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   ...cfz 10798    seq cseq 11062   ^cexp 11120   abscabs 11735    ~~> cli 11974   sum_csu 12174   * Metcxmt 16385   Metcme 16386   Caucca 18695
This theorem is referenced by:  bfplem1  26649
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ico 10678  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-xmet 16389  df-met 16390  df-bl 16391  df-cau 18698
  Copyright terms: Public domain W3C validator