MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvds Unicode version

Theorem gexdvds 15146
Description: The only  N that annihilate all the elements of the group are the multiples of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1  |-  X  =  ( Base `  G
)
gexcl.2  |-  E  =  (gEx `  G )
gexid.3  |-  .x.  =  (.g
`  G )
gexid.4  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
gexdvds  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( E  ||  N  <->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
Distinct variable groups:    x, E    x, G    x, N    x, X    x,  .0.    x,  .x.

Proof of Theorem gexdvds
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 gexcl.1 . . . . . 6  |-  X  =  ( Base `  G
)
2 gexcl.2 . . . . . 6  |-  E  =  (gEx `  G )
3 gexid.3 . . . . . 6  |-  .x.  =  (.g
`  G )
4 gexid.4 . . . . . 6  |-  .0.  =  ( 0g `  G )
51, 2, 3, 4gexdvdsi 15145 . . . . 5  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  E  ||  N )  -> 
( N  .x.  x
)  =  .0.  )
653expia 1155 . . . 4  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( E  ||  N  ->  ( N  .x.  x
)  =  .0.  )
)
76ralrimdva 2740 . . 3  |-  ( G  e.  Grp  ->  ( E  ||  N  ->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
87adantr 452 . 2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( E  ||  N  ->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
9 noel 3576 . . . . . . 7  |-  -.  ( abs `  N )  e.  (/)
10 oveq1 6028 . . . . . . . . . . . 12  |-  ( y  =  ( abs `  N
)  ->  ( y  .x.  x )  =  ( ( abs `  N
)  .x.  x )
)
1110eqeq1d 2396 . . . . . . . . . . 11  |-  ( y  =  ( abs `  N
)  ->  ( (
y  .x.  x )  =  .0.  <->  ( ( abs `  N )  .x.  x
)  =  .0.  )
)
1211ralbidv 2670 . . . . . . . . . 10  |-  ( y  =  ( abs `  N
)  ->  ( A. x  e.  X  (
y  .x.  x )  =  .0.  <->  A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  ) )
1312elrab 3036 . . . . . . . . 9  |-  ( ( abs `  N )  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  <->  ( ( abs `  N )  e.  NN  /\ 
A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  ) )
14 simprr 734 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) )
1514eleq2d 2455 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  e.  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  <->  ( abs `  N )  e.  (/) ) )
1613, 15syl5rbbr 252 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  e.  (/)  <->  ( ( abs `  N )  e.  NN  /\  A. x  e.  X  ( ( abs `  N )  .x.  x )  =  .0.  ) ) )
1716rbaibd 877 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }  =  (/) ) )  /\  A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  )  ->  (
( abs `  N
)  e.  (/)  <->  ( abs `  N )  e.  NN ) )
189, 17mtbii 294 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }  =  (/) ) )  /\  A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  )  ->  -.  ( abs `  N )  e.  NN )
1918ex 424 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  ->  -.  ( abs `  N )  e.  NN ) )
20 nn0abscl 12045 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( abs `  N )  e. 
NN0 )
2120ad2antlr 708 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( abs `  N )  e. 
NN0 )
22 elnn0 10156 . . . . . . 7  |-  ( ( abs `  N )  e.  NN0  <->  ( ( abs `  N )  e.  NN  \/  ( abs `  N
)  =  0 ) )
2321, 22sylib 189 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  e.  NN  \/  ( abs `  N )  =  0 ) )
2423ord 367 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( -.  ( abs `  N
)  e.  NN  ->  ( abs `  N )  =  0 ) )
2519, 24syld 42 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  ->  ( abs `  N )  =  0 ) )
26 simpr 448 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  x  e.  X )  /\  ( abs `  N )  =  N )  ->  ( abs `  N )  =  N )
2726oveq1d 6036 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  x  e.  X )  /\  ( abs `  N )  =  N )  ->  (
( abs `  N
)  .x.  x )  =  ( N  .x.  x ) )
2827eqeq1d 2396 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  x  e.  X )  /\  ( abs `  N )  =  N )  ->  (
( ( abs `  N
)  .x.  x )  =  .0.  <->  ( N  .x.  x )  =  .0.  ) )
29 oveq1 6028 . . . . . . . . 9  |-  ( ( abs `  N )  =  -u N  ->  (
( abs `  N
)  .x.  x )  =  ( -u N  .x.  x ) )
3029eqeq1d 2396 . . . . . . . 8  |-  ( ( abs `  N )  =  -u N  ->  (
( ( abs `  N
)  .x.  x )  =  .0.  <->  ( -u N  .x.  x )  =  .0.  ) )
31 eqid 2388 . . . . . . . . . . . 12  |-  ( inv g `  G )  =  ( inv g `  G )
321, 3, 31mulgneg 14836 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  x  e.  X )  ->  ( -u N  .x.  x )  =  ( ( inv g `  G ) `
 ( N  .x.  x ) ) )
33323expa 1153 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( -u N  .x.  x )  =  ( ( inv g `  G ) `  ( N  .x.  x ) ) )
344, 31grpinvid 14784 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  (
( inv g `  G ) `  .0.  )  =  .0.  )
3534ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( ( inv g `  G ) `
 .0.  )  =  .0.  )
3635eqcomd 2393 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  .0.  =  ( ( inv g `  G ) `  .0.  ) )
3733, 36eqeq12d 2402 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( ( -u N  .x.  x )  =  .0.  <->  ( ( inv g `  G ) `
 ( N  .x.  x ) )  =  ( ( inv g `  G ) `  .0.  ) ) )
38 simpll 731 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  G  e.  Grp )
391, 3mulgcl 14835 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  x  e.  X )  ->  ( N  .x.  x )  e.  X )
40393expa 1153 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( N  .x.  x )  e.  X
)
411, 4grpidcl 14761 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  .0.  e.  X )
4241ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  .0.  e.  X )
431, 31, 38, 40, 42grpinv11 14788 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( (
( inv g `  G ) `  ( N  .x.  x ) )  =  ( ( inv g `  G ) `
 .0.  )  <->  ( N  .x.  x )  =  .0.  ) )
4437, 43bitrd 245 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( ( -u N  .x.  x )  =  .0.  <->  ( N  .x.  x )  =  .0.  ) )
4530, 44sylan9bbr 682 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  x  e.  X )  /\  ( abs `  N )  = 
-u N )  -> 
( ( ( abs `  N )  .x.  x
)  =  .0.  <->  ( N  .x.  x )  =  .0.  ) )
46 zre 10219 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  RR )
4746ad2antlr 708 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  N  e.  RR )
4847absord 12146 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( ( abs `  N )  =  N  \/  ( abs `  N )  =  -u N ) )
4928, 45, 48mpjaodan 762 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  x  e.  X
)  ->  ( (
( abs `  N
)  .x.  x )  =  .0.  <->  ( N  .x.  x )  =  .0.  ) )
5049ralbidva 2666 . . . . 5  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( A. x  e.  X  ( ( abs `  N )  .x.  x
)  =  .0.  <->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
5150adantr 452 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( A. x  e.  X  ( ( abs `  N
)  .x.  x )  =  .0.  <->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
52 0dvds 12798 . . . . . 6  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
5352ad2antlr 708 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
0  ||  N  <->  N  = 
0 ) )
54 simprl 733 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  E  =  0 )
5554breq1d 4164 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( E  ||  N  <->  0  ||  N ) )
56 zcn 10220 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
5756ad2antlr 708 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  N  e.  CC )
5857abs00ad 12023 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  =  0  <->  N  =  0 ) )
5953, 55, 583bitr4rd 278 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  (
( abs `  N
)  =  0  <->  E  ||  N ) )
6025, 51, 593imtr3d 259 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ) )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0.  ->  E  ||  N ) )
61 elrabi 3034 . . . 4  |-  ( E  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  ->  E  e.  NN )
6246adantl 453 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  N  e.  RR )
63 nnrp 10554 . . . . . . . . . . . 12  |-  ( E  e.  NN  ->  E  e.  RR+ )
64 modval 11180 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  E  e.  RR+ )  -> 
( N  mod  E
)  =  ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) ) )
6562, 63, 64syl2an 464 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  mod  E )  =  ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) ) )
6665adantr 452 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( N  mod  E )  =  ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) ) )
6766oveq1d 6036 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N  mod  E )  .x.  x )  =  ( ( N  -  ( E  x.  ( |_ `  ( N  /  E
) ) ) ) 
.x.  x ) )
68 simplll 735 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  G  e.  Grp )
69 simpllr 736 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  N  e.  ZZ )
70 nnz 10236 . . . . . . . . . . . 12  |-  ( E  e.  NN  ->  E  e.  ZZ )
7170ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  E  e.  ZZ )
72 rerpdivcl 10572 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  E  e.  RR+ )  -> 
( N  /  E
)  e.  RR )
7362, 63, 72syl2an 464 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  /  E )  e.  RR )
7473flcld 11135 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( |_ `  ( N  /  E
) )  e.  ZZ )
7574adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( |_ `  ( N  /  E
) )  e.  ZZ )
7671, 75zmulcld 10314 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( E  x.  ( |_ `  ( N  /  E ) ) )  e.  ZZ )
77 simprl 733 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  x  e.  X
)
78 eqid 2388 . . . . . . . . . . 11  |-  ( -g `  G )  =  (
-g `  G )
791, 3, 78mulgsubdir 14849 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  ( E  x.  ( |_ `  ( N  /  E ) ) )  e.  ZZ  /\  x  e.  X ) )  -> 
( ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) )  .x.  x )  =  ( ( N 
.x.  x ) (
-g `  G )
( ( E  x.  ( |_ `  ( N  /  E ) ) )  .x.  x ) ) )
8068, 69, 76, 77, 79syl13anc 1186 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N  -  ( E  x.  ( |_ `  ( N  /  E ) ) ) )  .x.  x
)  =  ( ( N  .x.  x ) ( -g `  G
) ( ( E  x.  ( |_ `  ( N  /  E
) ) )  .x.  x ) ) )
81 simprr 734 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( N  .x.  x )  =  .0.  )
82 dvdsmul1 12799 . . . . . . . . . . . . 13  |-  ( ( E  e.  ZZ  /\  ( |_ `  ( N  /  E ) )  e.  ZZ )  ->  E  ||  ( E  x.  ( |_ `  ( N  /  E ) ) ) )
8371, 75, 82syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  E  ||  ( E  x.  ( |_ `  ( N  /  E
) ) ) )
841, 2, 3, 4gexdvdsi 15145 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  E  ||  ( E  x.  ( |_ `  ( N  /  E ) ) ) )  ->  (
( E  x.  ( |_ `  ( N  /  E ) ) ) 
.x.  x )  =  .0.  )
8568, 77, 83, 84syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( E  x.  ( |_ `  ( N  /  E
) ) )  .x.  x )  =  .0.  )
8681, 85oveq12d 6039 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N 
.x.  x ) (
-g `  G )
( ( E  x.  ( |_ `  ( N  /  E ) ) )  .x.  x ) )  =  (  .0.  ( -g `  G
)  .0.  ) )
87 simpll 731 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  G  e.  Grp )
8841ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  .0.  e.  X
)
891, 4, 78grpsubid 14801 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  .0.  e.  X )  -> 
(  .0.  ( -g `  G )  .0.  )  =  .0.  )
9087, 88, 89syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  (  .0.  ( -g `  G )  .0.  )  =  .0.  )
9190adantr 452 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  (  .0.  ( -g `  G )  .0.  )  =  .0.  )
9286, 91eqtrd 2420 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N 
.x.  x ) (
-g `  G )
( ( E  x.  ( |_ `  ( N  /  E ) ) )  .x.  x ) )  =  .0.  )
9367, 80, 923eqtrd 2424 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  (
x  e.  X  /\  ( N  .x.  x )  =  .0.  ) )  ->  ( ( N  mod  E )  .x.  x )  =  .0.  )
9493expr 599 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  /\  x  e.  X )  ->  (
( N  .x.  x
)  =  .0.  ->  ( ( N  mod  E
)  .x.  x )  =  .0.  ) )
9594ralimdva 2728 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0. 
->  A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0.  ) )
96 modlt 11186 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  E  e.  RR+ )  -> 
( N  mod  E
)  <  E )
9762, 63, 96syl2an 464 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  mod  E )  <  E )
98 zmodcl 11194 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  E  e.  NN )  ->  ( N  mod  E
)  e.  NN0 )
9998adantll 695 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  mod  E )  e.  NN0 )
10099nn0red 10208 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( N  mod  E )  e.  RR )
101 nnre 9940 . . . . . . . . . 10  |-  ( E  e.  NN  ->  E  e.  RR )
102101adantl 453 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  E  e.  RR )
103100, 102ltnled 9153 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( ( N  mod  E )  < 
E  <->  -.  E  <_  ( N  mod  E ) ) )
10497, 103mpbid 202 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  -.  E  <_  ( N  mod  E ) )
1051, 2, 3, 4gexlem2 15144 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( N  mod  E )  e.  NN  /\  A. x  e.  X  (
( N  mod  E
)  .x.  x )  =  .0.  )  ->  E  e.  ( 1 ... ( N  mod  E ) ) )
106 elfzle2 10994 . . . . . . . . . . . . 13  |-  ( E  e.  ( 1 ... ( N  mod  E
) )  ->  E  <_  ( N  mod  E
) )
107105, 106syl 16 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( N  mod  E )  e.  NN  /\  A. x  e.  X  (
( N  mod  E
)  .x.  x )  =  .0.  )  ->  E  <_  ( N  mod  E
) )
1081073expia 1155 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( N  mod  E )  e.  NN )  -> 
( A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0. 
->  E  <_  ( N  mod  E ) ) )
109108impancom 428 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  A. x  e.  X  ( ( N  mod  E
)  .x.  x )  =  .0.  )  ->  (
( N  mod  E
)  e.  NN  ->  E  <_  ( N  mod  E ) ) )
110109con3d 127 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  A. x  e.  X  ( ( N  mod  E
)  .x.  x )  =  .0.  )  ->  ( -.  E  <_  ( N  mod  E )  ->  -.  ( N  mod  E
)  e.  NN ) )
111110ex 424 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0.  ->  ( -.  E  <_  ( N  mod  E )  ->  -.  ( N  mod  E
)  e.  NN ) ) )
112111ad2antrr 707 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0. 
->  ( -.  E  <_ 
( N  mod  E
)  ->  -.  ( N  mod  E )  e.  NN ) ) )
113104, 112mpid 39 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( ( N  mod  E )  .x.  x )  =  .0. 
->  -.  ( N  mod  E )  e.  NN ) )
114 elnn0 10156 . . . . . . . 8  |-  ( ( N  mod  E )  e.  NN0  <->  ( ( N  mod  E )  e.  NN  \/  ( N  mod  E )  =  0 ) )
11599, 114sylib 189 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( ( N  mod  E )  e.  NN  \/  ( N  mod  E )  =  0 ) )
116115ord 367 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( -.  ( N  mod  E )  e.  NN  ->  ( N  mod  E )  =  0 ) )
11795, 113, 1163syld 53 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0. 
->  ( N  mod  E
)  =  0 ) )
118 simpr 448 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  E  e.  NN )
119 simplr 732 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  N  e.  ZZ )
120 dvdsval3 12784 . . . . . 6  |-  ( ( E  e.  NN  /\  N  e.  ZZ )  ->  ( E  ||  N  <->  ( N  mod  E )  =  0 ) )
121118, 119, 120syl2anc 643 . . . . 5  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( E  ||  N 
<->  ( N  mod  E
)  =  0 ) )
122117, 121sylibrd 226 . . . 4  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  NN )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0. 
->  E  ||  N ) )
12361, 122sylan2 461 . . 3  |-  ( ( ( G  e.  Grp  /\  N  e.  ZZ )  /\  E  e.  {
y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }
)  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0.  ->  E  ||  N
) )
124 eqid 2388 . . . . 5  |-  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  {
y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }
1251, 3, 4, 2, 124gexlem1 15141 . . . 4  |-  ( G  e.  Grp  ->  (
( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  =  (/) )  \/  E  e.  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  } ) )
126125adantr 452 . . 3  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( ( E  =  0  /\  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) )  \/  E  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }
) )
12760, 123, 126mpjaodan 762 . 2  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( A. x  e.  X  ( N  .x.  x )  =  .0. 
->  E  ||  N ) )
1288, 127impbid 184 1  |-  ( ( G  e.  Grp  /\  N  e.  ZZ )  ->  ( E  ||  N  <->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2650   {crab 2654   (/)c0 3572   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   CCcc 8922   RRcr 8923   0cc0 8924   1c1 8925    x. cmul 8929    < clt 9054    <_ cle 9055    - cmin 9224   -ucneg 9225    / cdiv 9610   NNcn 9933   NN0cn0 10154   ZZcz 10215   RR+crp 10545   ...cfz 10976   |_cfl 11129    mod cmo 11178   abscabs 11967    || cdivides 12780   Basecbs 13397   0gc0g 13651   Grpcgrp 14613   inv gcminusg 14614   -gcsg 14616  .gcmg 14617  gExcgex 15092
This theorem is referenced by:  gexdvds2  15147
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-rp 10546  df-fz 10977  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-dvds 12781  df-0g 13655  df-mnd 14618  df-grp 14740  df-minusg 14741  df-sbg 14742  df-mulg 14743  df-gex 15096
  Copyright terms: Public domain W3C validator