MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexex Unicode version

Theorem gexex 15396
Description: In an abelian group with finite exponent, there is an element in the group with order equal to the exponent. In other words, all orders of elements divide the largest order of an element of the group. This fails if  E  =  0, for example in an infinite p-group, where there are elements of arbitrarily large orders (so  E is zero) but no elements of infinite order. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1  |-  X  =  ( Base `  G
)
gexex.2  |-  E  =  (gEx `  G )
gexex.3  |-  O  =  ( od `  G
)
Assertion
Ref Expression
gexex  |-  ( ( G  e.  Abel  /\  E  e.  NN )  ->  E. x  e.  X  ( O `  x )  =  E )
Distinct variable groups:    x, E    x, G    x, O    x, X

Proof of Theorem gexex
Dummy variables  y  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexex.1 . . . . . . . 8  |-  X  =  ( Base `  G
)
2 gexex.3 . . . . . . . 8  |-  O  =  ( od `  G
)
31, 2odf 15103 . . . . . . 7  |-  O : X
--> NN0
4 frn 5538 . . . . . . 7  |-  ( O : X --> NN0  ->  ran 
O  C_  NN0 )
53, 4ax-mp 8 . . . . . 6  |-  ran  O  C_ 
NN0
6 nn0ssz 10235 . . . . . 6  |-  NN0  C_  ZZ
75, 6sstri 3301 . . . . 5  |-  ran  O  C_  ZZ
87a1i 11 . . . 4  |-  ( ( G  e.  Abel  /\  E  e.  NN )  ->  ran  O 
C_  ZZ )
9 ablgrp 15345 . . . . . . 7  |-  ( G  e.  Abel  ->  G  e. 
Grp )
109adantr 452 . . . . . 6  |-  ( ( G  e.  Abel  /\  E  e.  NN )  ->  G  e.  Grp )
111grpbn0 14762 . . . . . 6  |-  ( G  e.  Grp  ->  X  =/=  (/) )
1210, 11syl 16 . . . . 5  |-  ( ( G  e.  Abel  /\  E  e.  NN )  ->  X  =/=  (/) )
133fdmi 5537 . . . . . . . 8  |-  dom  O  =  X
1413eqeq1i 2395 . . . . . . 7  |-  ( dom 
O  =  (/)  <->  X  =  (/) )
15 dm0rn0 5027 . . . . . . 7  |-  ( dom 
O  =  (/)  <->  ran  O  =  (/) )
1614, 15bitr3i 243 . . . . . 6  |-  ( X  =  (/)  <->  ran  O  =  (/) )
1716necon3bii 2583 . . . . 5  |-  ( X  =/=  (/)  <->  ran  O  =/=  (/) )
1812, 17sylib 189 . . . 4  |-  ( ( G  e.  Abel  /\  E  e.  NN )  ->  ran  O  =/=  (/) )
19 nnz 10236 . . . . . 6  |-  ( E  e.  NN  ->  E  e.  ZZ )
2019adantl 453 . . . . 5  |-  ( ( G  e.  Abel  /\  E  e.  NN )  ->  E  e.  ZZ )
21 gexex.2 . . . . . . . . . 10  |-  E  =  (gEx `  G )
221, 21, 2gexod 15148 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( O `  x
)  ||  E )
2310, 22sylan 458 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  E  e.  NN )  /\  x  e.  X
)  ->  ( O `  x )  ||  E
)
241, 2odcl 15102 . . . . . . . . . . 11  |-  ( x  e.  X  ->  ( O `  x )  e.  NN0 )
2524adantl 453 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  E  e.  NN )  /\  x  e.  X
)  ->  ( O `  x )  e.  NN0 )
2625nn0zd 10306 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  E  e.  NN )  /\  x  e.  X
)  ->  ( O `  x )  e.  ZZ )
27 simplr 732 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  E  e.  NN )  /\  x  e.  X
)  ->  E  e.  NN )
28 dvdsle 12823 . . . . . . . . 9  |-  ( ( ( O `  x
)  e.  ZZ  /\  E  e.  NN )  ->  ( ( O `  x )  ||  E  ->  ( O `  x
)  <_  E )
)
2926, 27, 28syl2anc 643 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  E  e.  NN )  /\  x  e.  X
)  ->  ( ( O `  x )  ||  E  ->  ( O `
 x )  <_  E ) )
3023, 29mpd 15 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  E  e.  NN )  /\  x  e.  X
)  ->  ( O `  x )  <_  E
)
3130ralrimiva 2733 . . . . . 6  |-  ( ( G  e.  Abel  /\  E  e.  NN )  ->  A. x  e.  X  ( O `  x )  <_  E
)
32 ffn 5532 . . . . . . . 8  |-  ( O : X --> NN0  ->  O  Fn  X )
333, 32ax-mp 8 . . . . . . 7  |-  O  Fn  X
34 breq1 4157 . . . . . . . 8  |-  ( y  =  ( O `  x )  ->  (
y  <_  E  <->  ( O `  x )  <_  E
) )
3534ralrn 5813 . . . . . . 7  |-  ( O  Fn  X  ->  ( A. y  e.  ran  O  y  <_  E  <->  A. x  e.  X  ( O `  x )  <_  E
) )
3633, 35ax-mp 8 . . . . . 6  |-  ( A. y  e.  ran  O  y  <_  E  <->  A. x  e.  X  ( O `  x )  <_  E
)
3731, 36sylibr 204 . . . . 5  |-  ( ( G  e.  Abel  /\  E  e.  NN )  ->  A. y  e.  ran  O  y  <_  E )
38 breq2 4158 . . . . . . 7  |-  ( n  =  E  ->  (
y  <_  n  <->  y  <_  E ) )
3938ralbidv 2670 . . . . . 6  |-  ( n  =  E  ->  ( A. y  e.  ran  O  y  <_  n  <->  A. y  e.  ran  O  y  <_  E ) )
4039rspcev 2996 . . . . 5  |-  ( ( E  e.  ZZ  /\  A. y  e.  ran  O  y  <_  E )  ->  E. n  e.  ZZ  A. y  e.  ran  O  y  <_  n )
4120, 37, 40syl2anc 643 . . . 4  |-  ( ( G  e.  Abel  /\  E  e.  NN )  ->  E. n  e.  ZZ  A. y  e. 
ran  O  y  <_  n )
42 suprzcl2 10499 . . . 4  |-  ( ( ran  O  C_  ZZ  /\ 
ran  O  =/=  (/)  /\  E. n  e.  ZZ  A. y  e.  ran  O  y  <_  n )  ->  sup ( ran  O ,  RR ,  <  )  e.  ran  O )
438, 18, 41, 42syl3anc 1184 . . 3  |-  ( ( G  e.  Abel  /\  E  e.  NN )  ->  sup ( ran  O ,  RR ,  <  )  e.  ran  O )
44 fvelrnb 5714 . . . 4  |-  ( O  Fn  X  ->  ( sup ( ran  O ,  RR ,  <  )  e. 
ran  O  <->  E. x  e.  X  ( O `  x )  =  sup ( ran 
O ,  RR ,  <  ) ) )
4533, 44ax-mp 8 . . 3  |-  ( sup ( ran  O ,  RR ,  <  )  e. 
ran  O  <->  E. x  e.  X  ( O `  x )  =  sup ( ran 
O ,  RR ,  <  ) )
4643, 45sylib 189 . 2  |-  ( ( G  e.  Abel  /\  E  e.  NN )  ->  E. x  e.  X  ( O `  x )  =  sup ( ran  O ,  RR ,  <  ) )
47 simpll 731 . . . . 5  |-  ( ( ( G  e.  Abel  /\  E  e.  NN )  /\  ( x  e.  X  /\  ( O `
 x )  =  sup ( ran  O ,  RR ,  <  )
) )  ->  G  e.  Abel )
48 simplr 732 . . . . 5  |-  ( ( ( G  e.  Abel  /\  E  e.  NN )  /\  ( x  e.  X  /\  ( O `
 x )  =  sup ( ran  O ,  RR ,  <  )
) )  ->  E  e.  NN )
49 simprl 733 . . . . 5  |-  ( ( ( G  e.  Abel  /\  E  e.  NN )  /\  ( x  e.  X  /\  ( O `
 x )  =  sup ( ran  O ,  RR ,  <  )
) )  ->  x  e.  X )
507a1i 11 . . . . . . 7  |-  ( ( ( ( G  e. 
Abel  /\  E  e.  NN )  /\  ( x  e.  X  /\  ( O `
 x )  =  sup ( ran  O ,  RR ,  <  )
) )  /\  y  e.  X )  ->  ran  O 
C_  ZZ )
5141ad2antrr 707 . . . . . . 7  |-  ( ( ( ( G  e. 
Abel  /\  E  e.  NN )  /\  ( x  e.  X  /\  ( O `
 x )  =  sup ( ran  O ,  RR ,  <  )
) )  /\  y  e.  X )  ->  E. n  e.  ZZ  A. y  e. 
ran  O  y  <_  n )
5233a1i 11 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  E  e.  NN )  /\  ( x  e.  X  /\  ( O `
 x )  =  sup ( ran  O ,  RR ,  <  )
) )  ->  O  Fn  X )
53 fnfvelrn 5807 . . . . . . . 8  |-  ( ( O  Fn  X  /\  y  e.  X )  ->  ( O `  y
)  e.  ran  O
)
5452, 53sylan 458 . . . . . . 7  |-  ( ( ( ( G  e. 
Abel  /\  E  e.  NN )  /\  ( x  e.  X  /\  ( O `
 x )  =  sup ( ran  O ,  RR ,  <  )
) )  /\  y  e.  X )  ->  ( O `  y )  e.  ran  O )
55 suprzub 10500 . . . . . . 7  |-  ( ( ran  O  C_  ZZ  /\ 
E. n  e.  ZZ  A. y  e.  ran  O  y  <_  n  /\  ( O `  y )  e.  ran  O )  -> 
( O `  y
)  <_  sup ( ran  O ,  RR ,  <  ) )
5650, 51, 54, 55syl3anc 1184 . . . . . 6  |-  ( ( ( ( G  e. 
Abel  /\  E  e.  NN )  /\  ( x  e.  X  /\  ( O `
 x )  =  sup ( ran  O ,  RR ,  <  )
) )  /\  y  e.  X )  ->  ( O `  y )  <_  sup ( ran  O ,  RR ,  <  )
)
57 simplrr 738 . . . . . 6  |-  ( ( ( ( G  e. 
Abel  /\  E  e.  NN )  /\  ( x  e.  X  /\  ( O `
 x )  =  sup ( ran  O ,  RR ,  <  )
) )  /\  y  e.  X )  ->  ( O `  x )  =  sup ( ran  O ,  RR ,  <  )
)
5856, 57breqtrrd 4180 . . . . 5  |-  ( ( ( ( G  e. 
Abel  /\  E  e.  NN )  /\  ( x  e.  X  /\  ( O `
 x )  =  sup ( ran  O ,  RR ,  <  )
) )  /\  y  e.  X )  ->  ( O `  y )  <_  ( O `  x
) )
591, 21, 2, 47, 48, 49, 58gexexlem 15395 . . . 4  |-  ( ( ( G  e.  Abel  /\  E  e.  NN )  /\  ( x  e.  X  /\  ( O `
 x )  =  sup ( ran  O ,  RR ,  <  )
) )  ->  ( O `  x )  =  E )
6059expr 599 . . 3  |-  ( ( ( G  e.  Abel  /\  E  e.  NN )  /\  x  e.  X
)  ->  ( ( O `  x )  =  sup ( ran  O ,  RR ,  <  )  ->  ( O `  x
)  =  E ) )
6160reximdva 2762 . 2  |-  ( ( G  e.  Abel  /\  E  e.  NN )  ->  ( E. x  e.  X  ( O `  x )  =  sup ( ran 
O ,  RR ,  <  )  ->  E. x  e.  X  ( O `  x )  =  E ) )
6246, 61mpd 15 1  |-  ( ( G  e.  Abel  /\  E  e.  NN )  ->  E. x  e.  X  ( O `  x )  =  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650   E.wrex 2651    C_ wss 3264   (/)c0 3572   class class class wbr 4154   dom cdm 4819   ran crn 4820    Fn wfn 5390   -->wf 5391   ` cfv 5395   supcsup 7381   RRcr 8923    < clt 9054    <_ cle 9055   NNcn 9933   NN0cn0 10154   ZZcz 10215    || cdivides 12780   Basecbs 13397   Grpcgrp 14613   odcod 15091  gExcgex 15092   Abelcabel 15341
This theorem is referenced by:  cyggexb  15436  pgpfaclem3  15569
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-q 10508  df-rp 10546  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-dvds 12781  df-gcd 12935  df-prm 13008  df-pc 13139  df-0g 13655  df-mnd 14618  df-grp 14740  df-minusg 14741  df-sbg 14742  df-mulg 14743  df-od 15095  df-gex 15096  df-cmn 15342  df-abl 15343
  Copyright terms: Public domain W3C validator