MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexlem2 Unicode version

Theorem gexlem2 14909
Description: Any positive annihilator of all the group elements is an upper bound on the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1  |-  X  =  ( Base `  G
)
gexcl.2  |-  E  =  (gEx `  G )
gexid.3  |-  .x.  =  (.g
`  G )
gexid.4  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
gexlem2  |-  ( ( G  e.  V  /\  N  e.  NN  /\  A. x  e.  X  ( N  .x.  x )  =  .0.  )  ->  E  e.  ( 1 ... N
) )
Distinct variable groups:    x, E    x, G    x, N    x, V    x, X    x,  .0.    x, 
.x.

Proof of Theorem gexlem2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 oveq1 5881 . . . . . 6  |-  ( y  =  N  ->  (
y  .x.  x )  =  ( N  .x.  x ) )
21eqeq1d 2304 . . . . 5  |-  ( y  =  N  ->  (
( y  .x.  x
)  =  .0.  <->  ( N  .x.  x )  =  .0.  ) )
32ralbidv 2576 . . . 4  |-  ( y  =  N  ->  ( A. x  e.  X  ( y  .x.  x
)  =  .0.  <->  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
43elrab 2936 . . 3  |-  ( N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  <->  ( N  e.  NN  /\  A. x  e.  X  ( N  .x.  x )  =  .0.  ) )
5 gexcl.1 . . . . . 6  |-  X  =  ( Base `  G
)
6 gexid.3 . . . . . 6  |-  .x.  =  (.g
`  G )
7 gexid.4 . . . . . 6  |-  .0.  =  ( 0g `  G )
8 gexcl.2 . . . . . 6  |-  E  =  (gEx `  G )
9 eqid 2296 . . . . . 6  |-  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  {
y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }
105, 6, 7, 8, 9gexval 14905 . . . . 5  |-  ( G  e.  V  ->  E  =  if ( { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =  (/) ,  0 ,  sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  ) ) )
11 ne0i 3474 . . . . . 6  |-  ( N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  ->  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  =/=  (/) )
12 ifnefalse 3586 . . . . . 6  |-  ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }  =/=  (/)  ->  if ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }  =  (/) ,  0 ,  sup ( { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  } ,  RR ,  `'  <  ) )  =  sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  ) )
1311, 12syl 15 . . . . 5  |-  ( N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  ->  if ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }  =  (/) ,  0 ,  sup ( { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  } ,  RR ,  `'  <  ) )  =  sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  ) )
1410, 13sylan9eq 2348 . . . 4  |-  ( ( G  e.  V  /\  N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
} )  ->  E  =  sup ( { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  } ,  RR ,  `'  <  ) )
15 ssrab2 3271 . . . . . 6  |-  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  C_  NN
16 nnuz 10279 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
1715, 16sseqtri 3223 . . . . . . 7  |-  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  C_  ( ZZ>=
`  1 )
1811adantl 452 . . . . . . 7  |-  ( ( G  e.  V  /\  N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
} )  ->  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  }  =/=  (/) )
19 infmssuzcl 10317 . . . . . . 7  |-  ( ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }  C_  ( ZZ>= `  1 )  /\  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }  =/=  (/) )  ->  sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  )  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
} )
2017, 18, 19sylancr 644 . . . . . 6  |-  ( ( G  e.  V  /\  N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
} )  ->  sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  )  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
} )
2115, 20sseldi 3191 . . . . 5  |-  ( ( G  e.  V  /\  N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
} )  ->  sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  )  e.  NN )
22 infmssuzle 10316 . . . . . . 7  |-  ( ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  }  C_  ( ZZ>= `  1 )  /\  N  e.  { y  e.  NN  |  A. x  e.  X  (
y  .x.  x )  =  .0.  } )  ->  sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
} ,  RR ,  `'  <  )  <_  N
)
2317, 22mpan 651 . . . . . 6  |-  ( N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  ->  sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  )  <_  N )
2423adantl 452 . . . . 5  |-  ( ( G  e.  V  /\  N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
} )  ->  sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  )  <_  N )
2515sseli 3189 . . . . . . . 8  |-  ( N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  ->  N  e.  NN )
2625nnzd 10132 . . . . . . 7  |-  ( N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  ->  N  e.  ZZ )
27 fznn 10868 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
} ,  RR ,  `'  <  )  e.  ( 1 ... N )  <-> 
( sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  )  e.  NN  /\  sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  )  <_  N ) ) )
2826, 27syl 15 . . . . . 6  |-  ( N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
}  ->  ( sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  )  e.  ( 1 ... N )  <->  ( sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  )  e.  NN  /\  sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  )  <_  N ) ) )
2928adantl 452 . . . . 5  |-  ( ( G  e.  V  /\  N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
} )  ->  ( sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
} ,  RR ,  `'  <  )  e.  ( 1 ... N )  <-> 
( sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  )  e.  NN  /\  sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  )  <_  N ) ) )
3021, 24, 29mpbir2and 888 . . . 4  |-  ( ( G  e.  V  /\  N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
} )  ->  sup ( { y  e.  NN  |  A. x  e.  X  ( y  .x.  x
)  =  .0.  } ,  RR ,  `'  <  )  e.  ( 1 ... N ) )
3114, 30eqeltrd 2370 . . 3  |-  ( ( G  e.  V  /\  N  e.  { y  e.  NN  |  A. x  e.  X  ( y  .x.  x )  =  .0. 
} )  ->  E  e.  ( 1 ... N
) )
324, 31sylan2br 462 . 2  |-  ( ( G  e.  V  /\  ( N  e.  NN  /\ 
A. x  e.  X  ( N  .x.  x )  =  .0.  ) )  ->  E  e.  ( 1 ... N ) )
33323impb 1147 1  |-  ( ( G  e.  V  /\  N  e.  NN  /\  A. x  e.  X  ( N  .x.  x )  =  .0.  )  ->  E  e.  ( 1 ... N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   {crab 2560    C_ wss 3165   (/)c0 3468   ifcif 3578   class class class wbr 4039   `'ccnv 4704   ` cfv 5271  (class class class)co 5874   supcsup 7209   RRcr 8752   0cc0 8753   1c1 8754    < clt 8883    <_ cle 8884   NNcn 9762   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798   Basecbs 13164   0gc0g 13416  .gcmg 14382  gExcgex 14857
This theorem is referenced by:  gexdvds  14911  gexcl3  14914  gex1  14918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-gex 14861
  Copyright terms: Public domain W3C validator