Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ggen22 Structured version   Unicode version

Theorem ggen22 28798
Description: gen22 28797 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ggen22.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
ggen22  |-  ( ph  ->  ( ps  ->  A. x A. y ch ) )
Distinct variable groups:    ph, x    ph, y    ps, x    ps, y
Allowed substitution hints:    ch( x, y)

Proof of Theorem ggen22
StepHypRef Expression
1 ggen22.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21alrimdv 1644 . 2  |-  ( ph  ->  ( ps  ->  A. y ch ) )
32alrimdv 1644 1  |-  ( ph  ->  ( ps  ->  A. x A. y ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1556  ax-5 1567  ax-17 1627
  Copyright terms: Public domain W3C validator