MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmco Unicode version

Theorem ghmco 14702
Description: The composition of group homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
ghmco  |-  ( ( F  e.  ( T 
GrpHom  U )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )

Proof of Theorem ghmco
StepHypRef Expression
1 ghmmhm 14693 . . 3  |-  ( F  e.  ( T  GrpHom  U )  ->  F  e.  ( T MndHom  U ) )
2 ghmmhm 14693 . . 3  |-  ( G  e.  ( S  GrpHom  T )  ->  G  e.  ( S MndHom  T ) )
3 mhmco 14439 . . 3  |-  ( ( F  e.  ( T MndHom  U )  /\  G  e.  ( S MndHom  T ) )  ->  ( F  o.  G )  e.  ( S MndHom  U ) )
41, 2, 3syl2an 463 . 2  |-  ( ( F  e.  ( T 
GrpHom  U )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( F  o.  G )  e.  ( S MndHom  U ) )
5 ghmgrp1 14685 . . 3  |-  ( G  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
6 ghmgrp2 14686 . . 3  |-  ( F  e.  ( T  GrpHom  U )  ->  U  e.  Grp )
7 ghmmhmb 14694 . . 3  |-  ( ( S  e.  Grp  /\  U  e.  Grp )  ->  ( S  GrpHom  U )  =  ( S MndHom  U
) )
85, 6, 7syl2anr 464 . 2  |-  ( ( F  e.  ( T 
GrpHom  U )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( S  GrpHom  U )  =  ( S MndHom  U ) )
94, 8eleqtrrd 2360 1  |-  ( ( F  e.  ( T 
GrpHom  U )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    o. ccom 4693  (class class class)co 5858   Grpcgrp 14362   MndHom cmhm 14413    GrpHom cghm 14680
This theorem is referenced by:  gimco  14732  rhmco  15509  lmhmco  15800  lmhmvsca  15802  frgpcyg  16527  nmoco  18246  nghmco  18247
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-map 6774  df-0g 13404  df-mnd 14367  df-mhm 14415  df-grp 14489  df-ghm 14681
  Copyright terms: Public domain W3C validator