MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmcyg Unicode version

Theorem ghmcyg 15182
Description: The image of a cyclic group under a surjective group homomorphism is cyclic. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygctb.1  |-  B  =  ( Base `  G
)
ghmcyg.1  |-  C  =  ( Base `  H
)
Assertion
Ref Expression
ghmcyg  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  F : B -onto-> C )  ->  ( G  e. CycGrp  ->  H  e. CycGrp
) )

Proof of Theorem ghmcyg
Dummy variables  m  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cygctb.1 . . . 4  |-  B  =  ( Base `  G
)
2 eqid 2283 . . . 4  |-  (.g `  G
)  =  (.g `  G
)
31, 2iscyg 15166 . . 3  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\ 
E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )
43simprbi 450 . 2  |-  ( G  e. CycGrp  ->  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B )
5 ghmcyg.1 . . . . 5  |-  C  =  ( Base `  H
)
6 eqid 2283 . . . . 5  |-  (.g `  H
)  =  (.g `  H
)
7 ghmgrp2 14686 . . . . . 6  |-  ( F  e.  ( G  GrpHom  H )  ->  H  e.  Grp )
87ad2antrr 706 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  H  e.  Grp )
9 fof 5451 . . . . . . 7  |-  ( F : B -onto-> C  ->  F : B --> C )
109ad2antlr 707 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  F : B --> C )
11 simprl 732 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  x  e.  B )
12 ffvelrn 5663 . . . . . 6  |-  ( ( F : B --> C  /\  x  e.  B )  ->  ( F `  x
)  e.  C )
1310, 11, 12syl2anc 642 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  ( F `  x )  e.  C )
14 simplr 731 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  F : B -onto-> C )
15 foeq2 5448 . . . . . . . . . 10  |-  ( ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B  ->  ( F : ran  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) ) -onto-> C  <->  F : B -onto-> C ) )
1615ad2antll 709 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  ( F : ran  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) ) -onto-> C  <->  F : B -onto-> C ) )
1714, 16mpbird 223 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  F : ran  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) ) -onto-> C )
18 foelrn 5679 . . . . . . . 8  |-  ( ( F : ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) ) -onto-> C  /\  y  e.  C )  ->  E. z  e.  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) ) y  =  ( F `
 z ) )
1917, 18sylan 457 . . . . . . 7  |-  ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  ->  E. z  e.  ran  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) ) y  =  ( F `  z ) )
20 ovex 5883 . . . . . . . . 9  |-  ( m (.g `  G ) x )  e.  _V
2120rgenw 2610 . . . . . . . 8  |-  A. m  e.  ZZ  ( m (.g `  G ) x )  e.  _V
22 oveq1 5865 . . . . . . . . . 10  |-  ( n  =  m  ->  (
n (.g `  G ) x )  =  ( m (.g `  G ) x ) )
2322cbvmptv 4111 . . . . . . . . 9  |-  ( n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  ( m  e.  ZZ  |->  ( m (.g `  G ) x ) )
24 fveq2 5525 . . . . . . . . . 10  |-  ( z  =  ( m (.g `  G ) x )  ->  ( F `  z )  =  ( F `  ( m (.g `  G ) x ) ) )
2524eqeq2d 2294 . . . . . . . . 9  |-  ( z  =  ( m (.g `  G ) x )  ->  ( y  =  ( F `  z
)  <->  y  =  ( F `  ( m (.g `  G ) x ) ) ) )
2623, 25rexrnmpt 5670 . . . . . . . 8  |-  ( A. m  e.  ZZ  (
m (.g `  G ) x )  e.  _V  ->  ( E. z  e.  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) ) y  =  ( F `
 z )  <->  E. m  e.  ZZ  y  =  ( F `  ( m (.g `  G ) x ) ) ) )
2721, 26ax-mp 8 . . . . . . 7  |-  ( E. z  e.  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) ) y  =  ( F `  z
)  <->  E. m  e.  ZZ  y  =  ( F `  ( m (.g `  G
) x ) ) )
2819, 27sylib 188 . . . . . 6  |-  ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  ->  E. m  e.  ZZ  y  =  ( F `  ( m (.g `  G ) x ) ) )
29 simpll 730 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  F  e.  ( G  GrpHom  H ) )
3029ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  F  e.  ( G  GrpHom  H ) )
31 simpr 447 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  m  e.  ZZ )
3211ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  x  e.  B )
331, 2, 6ghmmulg 14695 . . . . . . . . 9  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  m  e.  ZZ  /\  x  e.  B )  ->  ( F `  ( m
(.g `  G ) x ) )  =  ( m (.g `  H ) ( F `  x ) ) )
3430, 31, 32, 33syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  ( F `
 ( m (.g `  G ) x ) )  =  ( m (.g `  H ) ( F `  x ) ) )
3534eqeq2d 2294 . . . . . . 7  |-  ( ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  /\  m  e.  ZZ )  ->  ( y  =  ( F `  ( m (.g `  G
) x ) )  <-> 
y  =  ( m (.g `  H ) ( F `  x ) ) ) )
3635rexbidva 2560 . . . . . 6  |-  ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  ->  ( E. m  e.  ZZ  y  =  ( F `  ( m (.g `  G
) x ) )  <->  E. m  e.  ZZ  y  =  ( m
(.g `  H ) ( F `  x ) ) ) )
3728, 36mpbid 201 . . . . 5  |-  ( ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  (
x  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B ) )  /\  y  e.  C
)  ->  E. m  e.  ZZ  y  =  ( m (.g `  H ) ( F `  x ) ) )
385, 6, 8, 13, 37iscygd 15174 . . . 4  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  ( x  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n (.g `  G ) x ) )  =  B ) )  ->  H  e. CycGrp )
3938expr 598 . . 3  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  F : B -onto-> C )  /\  x  e.  B
)  ->  ( ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B  ->  H  e. CycGrp ) )
4039rexlimdva 2667 . 2  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  F : B -onto-> C )  ->  ( E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n (.g `  G
) x ) )  =  B  ->  H  e. CycGrp ) )
414, 40syl5 28 1  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  F : B -onto-> C )  ->  ( G  e. CycGrp  ->  H  e. CycGrp
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    e. cmpt 4077   ran crn 4690   -->wf 5251   -onto->wfo 5253   ` cfv 5255  (class class class)co 5858   ZZcz 10024   Basecbs 13148   Grpcgrp 14362  .gcmg 14366    GrpHom cghm 14680  CycGrpccyg 15164
This theorem is referenced by:  giccyg  15186
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-seq 11047  df-0g 13404  df-mnd 14367  df-mhm 14415  df-grp 14489  df-minusg 14490  df-mulg 14492  df-ghm 14681  df-cyg 15165
  Copyright terms: Public domain W3C validator