MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf Structured version   Unicode version

Theorem ghmf 15002
Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmf.x  |-  X  =  ( Base `  S
)
ghmf.y  |-  Y  =  ( Base `  T
)
Assertion
Ref Expression
ghmf  |-  ( F  e.  ( S  GrpHom  T )  ->  F : X
--> Y )

Proof of Theorem ghmf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmf.x . . . 4  |-  X  =  ( Base `  S
)
2 ghmf.y . . . 4  |-  Y  =  ( Base `  T
)
3 eqid 2435 . . . 4  |-  ( +g  `  S )  =  ( +g  `  S )
4 eqid 2435 . . . 4  |-  ( +g  `  T )  =  ( +g  `  T )
51, 2, 3, 4isghm 14998 . . 3  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> Y  /\  A. y  e.  X  A. x  e.  X  ( F `  ( y
( +g  `  S ) x ) )  =  ( ( F `  y ) ( +g  `  T ) ( F `
 x ) ) ) ) )
65simprbi 451 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : X --> Y  /\  A. y  e.  X  A. x  e.  X  ( F `  ( y
( +g  `  S ) x ) )  =  ( ( F `  y ) ( +g  `  T ) ( F `
 x ) ) ) )
76simpld 446 1  |-  ( F  e.  ( S  GrpHom  T )  ->  F : X
--> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   -->wf 5442   ` cfv 5446  (class class class)co 6073   Basecbs 13461   +g cplusg 13521   Grpcgrp 14677    GrpHom cghm 14995
This theorem is referenced by:  ghmid  15004  ghminv  15005  ghmsub  15006  ghmmhm  15008  ghmmulg  15010  ghmrn  15011  resghm  15014  ghmpreima  15019  ghmeql  15020  ghmnsgima  15021  ghmnsgpreima  15022  ghmeqker  15024  ghmf1  15026  ghmf1o  15027  gimcnv  15046  lactghmga  15099  frgpup3lem  15401  frgpup3  15402  ghmplusg  15453  rhmf  15819  isrhm2d  15821  lmhmf  16102  lmhmpropd  16137  evlslem2  16560  frgpcyg  16846  nmoi  18754  nmoix  18755  nmoi2  18756  nmoleub  18757  nmoeq0  18762  nmoco  18763  nmotri  18765  nmods  18770  nghmcn  18771
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-ghm 14996
  Copyright terms: Public domain W3C validator