MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf1o Structured version   Unicode version

Theorem ghmf1o 15035
Description: A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
ghmf1o.x  |-  X  =  ( Base `  S
)
ghmf1o.y  |-  Y  =  ( Base `  T
)
Assertion
Ref Expression
ghmf1o  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : X -1-1-onto-> Y  <->  `' F  e.  ( T  GrpHom  S ) ) )

Proof of Theorem ghmf1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp2 15009 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
2 ghmgrp1 15008 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
31, 2jca 519 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( T  e.  Grp  /\  S  e. 
Grp ) )
43adantr 452 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  F : X -1-1-onto-> Y )  ->  ( T  e.  Grp  /\  S  e.  Grp ) )
5 f1ocnv 5687 . . . . . 6  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
65adantl 453 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  F : X -1-1-onto-> Y )  ->  `' F : Y -1-1-onto-> X )
7 f1of 5674 . . . . 5  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
86, 7syl 16 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  F : X -1-1-onto-> Y )  ->  `' F : Y --> X )
9 simpll 731 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  F  e.  ( S  GrpHom  T ) )
108adantr 452 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  `' F : Y --> X )
11 simprl 733 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  x  e.  Y )
1210, 11ffvelrnd 5871 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( `' F `  x )  e.  X )
13 simprr 734 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  y  e.  Y )
1410, 13ffvelrnd 5871 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( `' F `  y )  e.  X )
15 ghmf1o.x . . . . . . . . 9  |-  X  =  ( Base `  S
)
16 eqid 2436 . . . . . . . . 9  |-  ( +g  `  S )  =  ( +g  `  S )
17 eqid 2436 . . . . . . . . 9  |-  ( +g  `  T )  =  ( +g  `  T )
1815, 16, 17ghmlin 15011 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  ( `' F `  x )  e.  X  /\  ( `' F `  y )  e.  X )  -> 
( F `  (
( `' F `  x ) ( +g  `  S ) ( `' F `  y ) ) )  =  ( ( F `  ( `' F `  x ) ) ( +g  `  T
) ( F `  ( `' F `  y ) ) ) )
199, 12, 14, 18syl3anc 1184 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( F `  ( ( `' F `  x ) ( +g  `  S ) ( `' F `  y ) ) )  =  ( ( F `  ( `' F `  x ) ) ( +g  `  T
) ( F `  ( `' F `  y ) ) ) )
20 simplr 732 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  F : X
-1-1-onto-> Y )
21 f1ocnvfv2 6015 . . . . . . . . 9  |-  ( ( F : X -1-1-onto-> Y  /\  x  e.  Y )  ->  ( F `  ( `' F `  x ) )  =  x )
2220, 11, 21syl2anc 643 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( F `  ( `' F `  x ) )  =  x )
23 f1ocnvfv2 6015 . . . . . . . . 9  |-  ( ( F : X -1-1-onto-> Y  /\  y  e.  Y )  ->  ( F `  ( `' F `  y ) )  =  y )
2420, 13, 23syl2anc 643 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( F `  ( `' F `  y ) )  =  y )
2522, 24oveq12d 6099 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( ( F `  ( `' F `  x )
) ( +g  `  T
) ( F `  ( `' F `  y ) ) )  =  ( x ( +g  `  T
) y ) )
2619, 25eqtrd 2468 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( F `  ( ( `' F `  x ) ( +g  `  S ) ( `' F `  y ) ) )  =  ( x ( +g  `  T
) y ) )
279, 2syl 16 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  S  e.  Grp )
2815, 16grpcl 14818 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  ( `' F `  x )  e.  X  /\  ( `' F `  y )  e.  X )  -> 
( ( `' F `  x ) ( +g  `  S ) ( `' F `  y ) )  e.  X )
2927, 12, 14, 28syl3anc 1184 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) )  e.  X )
30 f1ocnvfv 6016 . . . . . . 7  |-  ( ( F : X -1-1-onto-> Y  /\  ( ( `' F `  x ) ( +g  `  S ) ( `' F `  y ) )  e.  X )  ->  ( ( F `
 ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) ) )  =  ( x ( +g  `  T ) y )  ->  ( `' F `  ( x ( +g  `  T
) y ) )  =  ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) ) ) )
3120, 29, 30syl2anc 643 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( ( F `  ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) ) )  =  ( x ( +g  `  T ) y )  ->  ( `' F `  ( x ( +g  `  T
) y ) )  =  ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) ) ) )
3226, 31mpd 15 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( `' F `  ( x
( +g  `  T ) y ) )  =  ( ( `' F `  x ) ( +g  `  S ) ( `' F `  y ) ) )
3332ralrimivva 2798 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  F : X -1-1-onto-> Y )  ->  A. x  e.  Y  A. y  e.  Y  ( `' F `  ( x
( +g  `  T ) y ) )  =  ( ( `' F `  x ) ( +g  `  S ) ( `' F `  y ) ) )
348, 33jca 519 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  F : X -1-1-onto-> Y )  ->  ( `' F : Y --> X  /\  A. x  e.  Y  A. y  e.  Y  ( `' F `  ( x ( +g  `  T
) y ) )  =  ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) ) ) )
35 ghmf1o.y . . . 4  |-  Y  =  ( Base `  T
)
3635, 15, 17, 16isghm 15006 . . 3  |-  ( `' F  e.  ( T 
GrpHom  S )  <->  ( ( T  e.  Grp  /\  S  e.  Grp )  /\  ( `' F : Y --> X  /\  A. x  e.  Y  A. y  e.  Y  ( `' F `  ( x ( +g  `  T
) y ) )  =  ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) ) ) ) )
374, 34, 36sylanbrc 646 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  F : X -1-1-onto-> Y )  ->  `' F  e.  ( T  GrpHom  S ) )
3815, 35ghmf 15010 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  F : X
--> Y )
3938adantr 452 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  `' F  e.  ( T  GrpHom  S ) )  ->  F : X --> Y )
40 ffn 5591 . . . 4  |-  ( F : X --> Y  ->  F  Fn  X )
4139, 40syl 16 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  `' F  e.  ( T  GrpHom  S ) )  ->  F  Fn  X )
4235, 15ghmf 15010 . . . . 5  |-  ( `' F  e.  ( T 
GrpHom  S )  ->  `' F : Y --> X )
4342adantl 453 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  `' F  e.  ( T  GrpHom  S ) )  ->  `' F : Y --> X )
44 ffn 5591 . . . 4  |-  ( `' F : Y --> X  ->  `' F  Fn  Y
)
4543, 44syl 16 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  `' F  e.  ( T  GrpHom  S ) )  ->  `' F  Fn  Y
)
46 dff1o4 5682 . . 3  |-  ( F : X -1-1-onto-> Y  <->  ( F  Fn  X  /\  `' F  Fn  Y ) )
4741, 45, 46sylanbrc 646 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  `' F  e.  ( T  GrpHom  S ) )  ->  F : X -1-1-onto-> Y )
4837, 47impbida 806 1  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : X -1-1-onto-> Y  <->  `' F  e.  ( T  GrpHom  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   `'ccnv 4877    Fn wfn 5449   -->wf 5450   -1-1-onto->wf1o 5453   ` cfv 5454  (class class class)co 6081   Basecbs 13469   +g cplusg 13529   Grpcgrp 14685    GrpHom cghm 15003
This theorem is referenced by:  isgim2  15052  lmhmf1o  16122
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-mnd 14690  df-grp 14812  df-ghm 15004
  Copyright terms: Public domain W3C validator