MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf1o Unicode version

Theorem ghmf1o 14728
Description: A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
ghmf1o.x  |-  X  =  ( Base `  S
)
ghmf1o.y  |-  Y  =  ( Base `  T
)
Assertion
Ref Expression
ghmf1o  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : X -1-1-onto-> Y  <->  `' F  e.  ( T  GrpHom  S ) ) )

Proof of Theorem ghmf1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp2 14702 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
2 ghmgrp1 14701 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
31, 2jca 518 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( T  e.  Grp  /\  S  e. 
Grp ) )
43adantr 451 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  F : X -1-1-onto-> Y )  ->  ( T  e.  Grp  /\  S  e.  Grp ) )
5 f1ocnv 5501 . . . . . 6  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
65adantl 452 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  F : X -1-1-onto-> Y )  ->  `' F : Y -1-1-onto-> X )
7 f1of 5488 . . . . 5  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
86, 7syl 15 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  F : X -1-1-onto-> Y )  ->  `' F : Y --> X )
9 simpll 730 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  F  e.  ( S  GrpHom  T ) )
108adantr 451 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  `' F : Y --> X )
11 simprl 732 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  x  e.  Y )
12 ffvelrn 5679 . . . . . . . . 9  |-  ( ( `' F : Y --> X  /\  x  e.  Y )  ->  ( `' F `  x )  e.  X
)
1310, 11, 12syl2anc 642 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( `' F `  x )  e.  X )
14 simprr 733 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  y  e.  Y )
15 ffvelrn 5679 . . . . . . . . 9  |-  ( ( `' F : Y --> X  /\  y  e.  Y )  ->  ( `' F `  y )  e.  X
)
1610, 14, 15syl2anc 642 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( `' F `  y )  e.  X )
17 ghmf1o.x . . . . . . . . 9  |-  X  =  ( Base `  S
)
18 eqid 2296 . . . . . . . . 9  |-  ( +g  `  S )  =  ( +g  `  S )
19 eqid 2296 . . . . . . . . 9  |-  ( +g  `  T )  =  ( +g  `  T )
2017, 18, 19ghmlin 14704 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  ( `' F `  x )  e.  X  /\  ( `' F `  y )  e.  X )  -> 
( F `  (
( `' F `  x ) ( +g  `  S ) ( `' F `  y ) ) )  =  ( ( F `  ( `' F `  x ) ) ( +g  `  T
) ( F `  ( `' F `  y ) ) ) )
219, 13, 16, 20syl3anc 1182 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( F `  ( ( `' F `  x ) ( +g  `  S ) ( `' F `  y ) ) )  =  ( ( F `  ( `' F `  x ) ) ( +g  `  T
) ( F `  ( `' F `  y ) ) ) )
22 simplr 731 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  F : X
-1-1-onto-> Y )
23 f1ocnvfv2 5809 . . . . . . . . 9  |-  ( ( F : X -1-1-onto-> Y  /\  x  e.  Y )  ->  ( F `  ( `' F `  x ) )  =  x )
2422, 11, 23syl2anc 642 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( F `  ( `' F `  x ) )  =  x )
25 f1ocnvfv2 5809 . . . . . . . . 9  |-  ( ( F : X -1-1-onto-> Y  /\  y  e.  Y )  ->  ( F `  ( `' F `  y ) )  =  y )
2622, 14, 25syl2anc 642 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( F `  ( `' F `  y ) )  =  y )
2724, 26oveq12d 5892 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( ( F `  ( `' F `  x )
) ( +g  `  T
) ( F `  ( `' F `  y ) ) )  =  ( x ( +g  `  T
) y ) )
2821, 27eqtrd 2328 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( F `  ( ( `' F `  x ) ( +g  `  S ) ( `' F `  y ) ) )  =  ( x ( +g  `  T
) y ) )
299, 2syl 15 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  S  e.  Grp )
3017, 18grpcl 14511 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  ( `' F `  x )  e.  X  /\  ( `' F `  y )  e.  X )  -> 
( ( `' F `  x ) ( +g  `  S ) ( `' F `  y ) )  e.  X )
3129, 13, 16, 30syl3anc 1182 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) )  e.  X )
32 f1ocnvfv 5810 . . . . . . 7  |-  ( ( F : X -1-1-onto-> Y  /\  ( ( `' F `  x ) ( +g  `  S ) ( `' F `  y ) )  e.  X )  ->  ( ( F `
 ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) ) )  =  ( x ( +g  `  T ) y )  ->  ( `' F `  ( x ( +g  `  T
) y ) )  =  ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) ) ) )
3322, 31, 32syl2anc 642 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( ( F `  ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) ) )  =  ( x ( +g  `  T ) y )  ->  ( `' F `  ( x ( +g  `  T
) y ) )  =  ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) ) ) )
3428, 33mpd 14 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  F : X -1-1-onto-> Y )  /\  (
x  e.  Y  /\  y  e.  Y )
)  ->  ( `' F `  ( x
( +g  `  T ) y ) )  =  ( ( `' F `  x ) ( +g  `  S ) ( `' F `  y ) ) )
3534ralrimivva 2648 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  F : X -1-1-onto-> Y )  ->  A. x  e.  Y  A. y  e.  Y  ( `' F `  ( x
( +g  `  T ) y ) )  =  ( ( `' F `  x ) ( +g  `  S ) ( `' F `  y ) ) )
368, 35jca 518 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  F : X -1-1-onto-> Y )  ->  ( `' F : Y --> X  /\  A. x  e.  Y  A. y  e.  Y  ( `' F `  ( x ( +g  `  T
) y ) )  =  ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) ) ) )
37 ghmf1o.y . . . 4  |-  Y  =  ( Base `  T
)
3837, 17, 19, 18isghm 14699 . . 3  |-  ( `' F  e.  ( T 
GrpHom  S )  <->  ( ( T  e.  Grp  /\  S  e.  Grp )  /\  ( `' F : Y --> X  /\  A. x  e.  Y  A. y  e.  Y  ( `' F `  ( x ( +g  `  T
) y ) )  =  ( ( `' F `  x ) ( +g  `  S
) ( `' F `  y ) ) ) ) )
394, 36, 38sylanbrc 645 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  F : X -1-1-onto-> Y )  ->  `' F  e.  ( T  GrpHom  S ) )
4017, 37ghmf 14703 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  F : X
--> Y )
4140adantr 451 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  `' F  e.  ( T  GrpHom  S ) )  ->  F : X --> Y )
42 ffn 5405 . . . 4  |-  ( F : X --> Y  ->  F  Fn  X )
4341, 42syl 15 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  `' F  e.  ( T  GrpHom  S ) )  ->  F  Fn  X )
4437, 17ghmf 14703 . . . . 5  |-  ( `' F  e.  ( T 
GrpHom  S )  ->  `' F : Y --> X )
4544adantl 452 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  `' F  e.  ( T  GrpHom  S ) )  ->  `' F : Y --> X )
46 ffn 5405 . . . 4  |-  ( `' F : Y --> X  ->  `' F  Fn  Y
)
4745, 46syl 15 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  `' F  e.  ( T  GrpHom  S ) )  ->  `' F  Fn  Y
)
48 dff1o4 5496 . . 3  |-  ( F : X -1-1-onto-> Y  <->  ( F  Fn  X  /\  `' F  Fn  Y ) )
4943, 47, 48sylanbrc 645 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  `' F  e.  ( T  GrpHom  S ) )  ->  F : X -1-1-onto-> Y )
5039, 49impbida 805 1  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : X -1-1-onto-> Y  <->  `' F  e.  ( T  GrpHom  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   `'ccnv 4704    Fn wfn 5266   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   Grpcgrp 14378    GrpHom cghm 14696
This theorem is referenced by:  isgim2  14745  lmhmf1o  15819
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-mnd 14383  df-grp 14505  df-ghm 14697
  Copyright terms: Public domain W3C validator