MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmmulg Unicode version

Theorem ghmmulg 14695
Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
ghmmulg.b  |-  B  =  ( Base `  G
)
ghmmulg.s  |-  .x.  =  (.g
`  G )
ghmmulg.t  |-  .X.  =  (.g
`  H )
Assertion
Ref Expression
ghmmulg  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )

Proof of Theorem ghmmulg
StepHypRef Expression
1 ghmmhm 14693 . . . . . 6  |-  ( F  e.  ( G  GrpHom  H )  ->  F  e.  ( G MndHom  H ) )
2 ghmmulg.b . . . . . . 7  |-  B  =  ( Base `  G
)
3 ghmmulg.s . . . . . . 7  |-  .x.  =  (.g
`  G )
4 ghmmulg.t . . . . . . 7  |-  .X.  =  (.g
`  H )
52, 3, 4mhmmulg 14599 . . . . . 6  |-  ( ( F  e.  ( G MndHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
61, 5syl3an1 1215 . . . . 5  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
763expa 1151 . . . 4  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  NN0 )  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X ) ) )
87an32s 779 . . 3  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  X  e.  B )  /\  N  e.  NN0 )  ->  ( F `  ( N  .x.  X ) )  =  ( N 
.X.  ( F `  X ) ) )
983adantl2 1112 . 2  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN0 )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
10 simpl1 958 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  F  e.  ( G  GrpHom  H ) )
1110, 1syl 15 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  F  e.  ( G MndHom  H ) )
12 nnnn0 9972 . . . . . . . 8  |-  ( -u N  e.  NN  ->  -u N  e.  NN0 )
1312ad2antll 709 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
14 simpl3 960 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  X  e.  B )
152, 3, 4mhmmulg 14599 . . . . . . 7  |-  ( ( F  e.  ( G MndHom  H )  /\  -u N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( -u N  .x.  X ) )  =  ( -u N  .X.  ( F `  X ) ) )
1611, 13, 14, 15syl3anc 1182 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( F `  ( -u N  .x.  X ) )  =  ( -u N  .X.  ( F `  X ) ) )
1716fveq2d 5529 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( inv g `  H ) `  ( F `  ( -u N  .x.  X ) ) )  =  ( ( inv g `  H ) `
 ( -u N  .X.  ( F `  X
) ) ) )
18 ghmgrp1 14685 . . . . . . . 8  |-  ( F  e.  ( G  GrpHom  H )  ->  G  e.  Grp )
1910, 18syl 15 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  G  e.  Grp )
20 nnz 10045 . . . . . . . 8  |-  ( -u N  e.  NN  ->  -u N  e.  ZZ )
2120ad2antll 709 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
222, 3mulgcl 14584 . . . . . . 7  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  e.  B
)
2319, 21, 14, 22syl3anc 1182 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u N  .x.  X
)  e.  B )
24 eqid 2283 . . . . . . 7  |-  ( inv g `  G )  =  ( inv g `  G )
25 eqid 2283 . . . . . . 7  |-  ( inv g `  H )  =  ( inv g `  H )
262, 24, 25ghminv 14690 . . . . . 6  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  ( -u N  .x.  X )  e.  B )  -> 
( F `  (
( inv g `  G ) `  ( -u N  .x.  X ) ) )  =  ( ( inv g `  H ) `  ( F `  ( -u N  .x.  X ) ) ) )
2710, 23, 26syl2anc 642 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( F `  (
( inv g `  G ) `  ( -u N  .x.  X ) ) )  =  ( ( inv g `  H ) `  ( F `  ( -u N  .x.  X ) ) ) )
28 ghmgrp2 14686 . . . . . . 7  |-  ( F  e.  ( G  GrpHom  H )  ->  H  e.  Grp )
2910, 28syl 15 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  H  e.  Grp )
30 eqid 2283 . . . . . . . . 9  |-  ( Base `  H )  =  (
Base `  H )
312, 30ghmf 14687 . . . . . . . 8  |-  ( F  e.  ( G  GrpHom  H )  ->  F : B
--> ( Base `  H
) )
3210, 31syl 15 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  F : B --> ( Base `  H ) )
33 ffvelrn 5663 . . . . . . 7  |-  ( ( F : B --> ( Base `  H )  /\  X  e.  B )  ->  ( F `  X )  e.  ( Base `  H
) )
3432, 14, 33syl2anc 642 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( F `  X
)  e.  ( Base `  H ) )
3530, 4, 25mulgneg 14585 . . . . . 6  |-  ( ( H  e.  Grp  /\  -u N  e.  ZZ  /\  ( F `  X )  e.  ( Base `  H
) )  ->  ( -u -u N  .X.  ( F `
 X ) )  =  ( ( inv g `  H ) `
 ( -u N  .X.  ( F `  X
) ) ) )
3629, 21, 34, 35syl3anc 1182 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u -u N  .X.  ( F `  X )
)  =  ( ( inv g `  H
) `  ( -u N  .X.  ( F `  X
) ) ) )
3717, 27, 363eqtr4d 2325 . . . 4  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( F `  (
( inv g `  G ) `  ( -u N  .x.  X ) ) )  =  (
-u -u N  .X.  ( F `  X )
) )
382, 3, 24mulgneg 14585 . . . . . . 7  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u -u N  .x.  X )  =  ( ( inv g `  G ) `  ( -u N  .x.  X ) ) )
3919, 21, 14, 38syl3anc 1182 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u -u N  .x.  X
)  =  ( ( inv g `  G
) `  ( -u N  .x.  X ) ) )
40 simprl 732 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
4140recnd 8861 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
4241negnegd 9148 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u -u N  =  N
)
4342oveq1d 5873 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u -u N  .x.  X
)  =  ( N 
.x.  X ) )
4439, 43eqtr3d 2317 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( inv g `  G ) `  ( -u N  .x.  X ) )  =  ( N 
.x.  X ) )
4544fveq2d 5529 . . . 4  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( F `  (
( inv g `  G ) `  ( -u N  .x.  X ) ) )  =  ( F `  ( N 
.x.  X ) ) )
4637, 45eqtr3d 2317 . . 3  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u -u N  .X.  ( F `  X )
)  =  ( F `
 ( N  .x.  X ) ) )
4742oveq1d 5873 . . 3  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u -u N  .X.  ( F `  X )
)  =  ( N 
.X.  ( F `  X ) ) )
4846, 47eqtr3d 2317 . 2  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X ) ) )
49 simp2 956 . . 3  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  ->  N  e.  ZZ )
50 elznn0nn 10037 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
5149, 50sylib 188 . 2  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
529, 48, 51mpjaodan 761 1  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   -->wf 5251   ` cfv 5255  (class class class)co 5858   RRcr 8736   -ucneg 9038   NNcn 9746   NN0cn0 9965   ZZcz 10024   Basecbs 13148   Grpcgrp 14362   inv gcminusg 14363  .gcmg 14366   MndHom cmhm 14413    GrpHom cghm 14680
This theorem is referenced by:  ghmcyg  15182  mulgrhm2  16461  dchrabs  20499
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-seq 11047  df-0g 13404  df-mnd 14367  df-mhm 14415  df-grp 14489  df-minusg 14490  df-mulg 14492  df-ghm 14681
  Copyright terms: Public domain W3C validator