MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmnsgima Unicode version

Theorem ghmnsgima 14722
Description: The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
ghmnsgima.1  |-  Y  =  ( Base `  T
)
Assertion
Ref Expression
ghmnsgima  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( F " U )  e.  (NrmSGrp `  T ) )

Proof of Theorem ghmnsgima
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  F  e.  ( S  GrpHom  T ) )
2 nsgsubg 14665 . . . 4  |-  ( U  e.  (NrmSGrp `  S
)  ->  U  e.  (SubGrp `  S ) )
323ad2ant2 977 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  U  e.  (SubGrp `  S ) )
4 ghmima 14719 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (SubGrp `  S )
)  ->  ( F " U )  e.  (SubGrp `  T ) )
51, 3, 4syl2anc 642 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( F " U )  e.  (SubGrp `  T ) )
61adantr 451 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  F  e.  ( S  GrpHom  T ) )
7 ghmgrp1 14701 . . . . . . . . 9  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
86, 7syl 15 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  S  e.  Grp )
9 simprl 732 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
z  e.  ( Base `  S ) )
10 eqid 2296 . . . . . . . . . . . 12  |-  ( Base `  S )  =  (
Base `  S )
1110subgss 14638 . . . . . . . . . . 11  |-  ( U  e.  (SubGrp `  S
)  ->  U  C_  ( Base `  S ) )
123, 11syl 15 . . . . . . . . . 10  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  U  C_  ( Base `  S ) )
1312adantr 451 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  U  C_  ( Base `  S
) )
14 simprr 733 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  x  e.  U )
1513, 14sseldd 3194 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  x  e.  ( Base `  S ) )
16 eqid 2296 . . . . . . . . 9  |-  ( +g  `  S )  =  ( +g  `  S )
1710, 16grpcl 14511 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  z  e.  ( Base `  S )  /\  x  e.  ( Base `  S
) )  ->  (
z ( +g  `  S
) x )  e.  ( Base `  S
) )
188, 9, 15, 17syl3anc 1182 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( z ( +g  `  S ) x )  e.  ( Base `  S
) )
19 eqid 2296 . . . . . . . 8  |-  ( -g `  S )  =  (
-g `  S )
20 eqid 2296 . . . . . . . 8  |-  ( -g `  T )  =  (
-g `  T )
2110, 19, 20ghmsub 14707 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  (
z ( +g  `  S
) x )  e.  ( Base `  S
)  /\  z  e.  ( Base `  S )
)  ->  ( F `  ( ( z ( +g  `  S ) x ) ( -g `  S ) z ) )  =  ( ( F `  ( z ( +g  `  S
) x ) ) ( -g `  T
) ( F `  z ) ) )
226, 18, 9, 21syl3anc 1182 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( F `  (
( z ( +g  `  S ) x ) ( -g `  S
) z ) )  =  ( ( F `
 ( z ( +g  `  S ) x ) ) (
-g `  T )
( F `  z
) ) )
23 eqid 2296 . . . . . . . . 9  |-  ( +g  `  T )  =  ( +g  `  T )
2410, 16, 23ghmlin 14704 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  z  e.  ( Base `  S
)  /\  x  e.  ( Base `  S )
)  ->  ( F `  ( z ( +g  `  S ) x ) )  =  ( ( F `  z ) ( +g  `  T
) ( F `  x ) ) )
256, 9, 15, 24syl3anc 1182 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( F `  (
z ( +g  `  S
) x ) )  =  ( ( F `
 z ) ( +g  `  T ) ( F `  x
) ) )
2625oveq1d 5889 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( ( F `  ( z ( +g  `  S ) x ) ) ( -g `  T
) ( F `  z ) )  =  ( ( ( F `
 z ) ( +g  `  T ) ( F `  x
) ) ( -g `  T ) ( F `
 z ) ) )
2722, 26eqtrd 2328 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( F `  (
( z ( +g  `  S ) x ) ( -g `  S
) z ) )  =  ( ( ( F `  z ) ( +g  `  T
) ( F `  x ) ) (
-g `  T )
( F `  z
) ) )
28 ghmnsgima.1 . . . . . . . . . 10  |-  Y  =  ( Base `  T
)
2910, 28ghmf 14703 . . . . . . . . 9  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> Y )
301, 29syl 15 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  F :
( Base `  S ) --> Y )
3130adantr 451 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  F : ( Base `  S
) --> Y )
32 ffn 5405 . . . . . . 7  |-  ( F : ( Base `  S
) --> Y  ->  F  Fn  ( Base `  S
) )
3331, 32syl 15 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  F  Fn  ( Base `  S ) )
34 simpl2 959 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  ->  U  e.  (NrmSGrp `  S
) )
3510, 16, 19nsgconj 14666 . . . . . . 7  |-  ( ( U  e.  (NrmSGrp `  S
)  /\  z  e.  ( Base `  S )  /\  x  e.  U
)  ->  ( (
z ( +g  `  S
) x ) (
-g `  S )
z )  e.  U
)
3634, 9, 14, 35syl3anc 1182 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( ( z ( +g  `  S ) x ) ( -g `  S ) z )  e.  U )
37 fnfvima 5772 . . . . . 6  |-  ( ( F  Fn  ( Base `  S )  /\  U  C_  ( Base `  S
)  /\  ( (
z ( +g  `  S
) x ) (
-g `  S )
z )  e.  U
)  ->  ( F `  ( ( z ( +g  `  S ) x ) ( -g `  S ) z ) )  e.  ( F
" U ) )
3833, 13, 36, 37syl3anc 1182 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( F `  (
( z ( +g  `  S ) x ) ( -g `  S
) z ) )  e.  ( F " U ) )
3927, 38eqeltrrd 2371 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  U  e.  (NrmSGrp `  S
)  /\  ran  F  =  Y )  /\  (
z  e.  ( Base `  S )  /\  x  e.  U ) )  -> 
( ( ( F `
 z ) ( +g  `  T ) ( F `  x
) ) ( -g `  T ) ( F `
 z ) )  e.  ( F " U ) )
4039ralrimivva 2648 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  A. z  e.  ( Base `  S
) A. x  e.  U  ( ( ( F `  z ) ( +g  `  T
) ( F `  x ) ) (
-g `  T )
( F `  z
) )  e.  ( F " U ) )
4130, 32syl 15 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  F  Fn  ( Base `  S )
)
42 oveq1 5881 . . . . . . . . 9  |-  ( x  =  ( F `  z )  ->  (
x ( +g  `  T
) y )  =  ( ( F `  z ) ( +g  `  T ) y ) )
43 id 19 . . . . . . . . 9  |-  ( x  =  ( F `  z )  ->  x  =  ( F `  z ) )
4442, 43oveq12d 5892 . . . . . . . 8  |-  ( x  =  ( F `  z )  ->  (
( x ( +g  `  T ) y ) ( -g `  T
) x )  =  ( ( ( F `
 z ) ( +g  `  T ) y ) ( -g `  T ) ( F `
 z ) ) )
4544eleq1d 2362 . . . . . . 7  |-  ( x  =  ( F `  z )  ->  (
( ( x ( +g  `  T ) y ) ( -g `  T ) x )  e.  ( F " U )  <->  ( (
( F `  z
) ( +g  `  T
) y ) (
-g `  T )
( F `  z
) )  e.  ( F " U ) ) )
4645ralbidv 2576 . . . . . 6  |-  ( x  =  ( F `  z )  ->  ( A. y  e.  ( F " U ) ( ( x ( +g  `  T ) y ) ( -g `  T
) x )  e.  ( F " U
)  <->  A. y  e.  ( F " U ) ( ( ( F `
 z ) ( +g  `  T ) y ) ( -g `  T ) ( F `
 z ) )  e.  ( F " U ) ) )
4746ralrn 5684 . . . . 5  |-  ( F  Fn  ( Base `  S
)  ->  ( A. x  e.  ran  F A. y  e.  ( F " U ) ( ( x ( +g  `  T
) y ) (
-g `  T )
x )  e.  ( F " U )  <->  A. z  e.  ( Base `  S ) A. y  e.  ( F " U ) ( ( ( F `  z
) ( +g  `  T
) y ) (
-g `  T )
( F `  z
) )  e.  ( F " U ) ) )
4841, 47syl 15 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( A. x  e.  ran  F A. y  e.  ( F " U ) ( ( x ( +g  `  T
) y ) (
-g `  T )
x )  e.  ( F " U )  <->  A. z  e.  ( Base `  S ) A. y  e.  ( F " U ) ( ( ( F `  z
) ( +g  `  T
) y ) (
-g `  T )
( F `  z
) )  e.  ( F " U ) ) )
49 simp3 957 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ran  F  =  Y )
5049raleqdv 2755 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( A. x  e.  ran  F A. y  e.  ( F " U ) ( ( x ( +g  `  T
) y ) (
-g `  T )
x )  e.  ( F " U )  <->  A. x  e.  Y  A. y  e.  ( F " U ) ( ( x ( +g  `  T ) y ) ( -g `  T
) x )  e.  ( F " U
) ) )
51 oveq2 5882 . . . . . . . . 9  |-  ( y  =  ( F `  x )  ->  (
( F `  z
) ( +g  `  T
) y )  =  ( ( F `  z ) ( +g  `  T ) ( F `
 x ) ) )
5251oveq1d 5889 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
( ( F `  z ) ( +g  `  T ) y ) ( -g `  T
) ( F `  z ) )  =  ( ( ( F `
 z ) ( +g  `  T ) ( F `  x
) ) ( -g `  T ) ( F `
 z ) ) )
5352eleq1d 2362 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  (
( ( ( F `
 z ) ( +g  `  T ) y ) ( -g `  T ) ( F `
 z ) )  e.  ( F " U )  <->  ( (
( F `  z
) ( +g  `  T
) ( F `  x ) ) (
-g `  T )
( F `  z
) )  e.  ( F " U ) ) )
5453ralima 5774 . . . . . 6  |-  ( ( F  Fn  ( Base `  S )  /\  U  C_  ( Base `  S
) )  ->  ( A. y  e.  ( F " U ) ( ( ( F `  z ) ( +g  `  T ) y ) ( -g `  T
) ( F `  z ) )  e.  ( F " U
)  <->  A. x  e.  U  ( ( ( F `
 z ) ( +g  `  T ) ( F `  x
) ) ( -g `  T ) ( F `
 z ) )  e.  ( F " U ) ) )
5541, 12, 54syl2anc 642 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( A. y  e.  ( F " U ) ( ( ( F `  z
) ( +g  `  T
) y ) (
-g `  T )
( F `  z
) )  e.  ( F " U )  <->  A. x  e.  U  ( ( ( F `
 z ) ( +g  `  T ) ( F `  x
) ) ( -g `  T ) ( F `
 z ) )  e.  ( F " U ) ) )
5655ralbidv 2576 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( A. z  e.  ( Base `  S ) A. y  e.  ( F " U
) ( ( ( F `  z ) ( +g  `  T
) y ) (
-g `  T )
( F `  z
) )  e.  ( F " U )  <->  A. z  e.  ( Base `  S ) A. x  e.  U  (
( ( F `  z ) ( +g  `  T ) ( F `
 x ) ) ( -g `  T
) ( F `  z ) )  e.  ( F " U
) ) )
5748, 50, 563bitr3d 274 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( A. x  e.  Y  A. y  e.  ( F " U ) ( ( x ( +g  `  T
) y ) (
-g `  T )
x )  e.  ( F " U )  <->  A. z  e.  ( Base `  S ) A. x  e.  U  (
( ( F `  z ) ( +g  `  T ) ( F `
 x ) ) ( -g `  T
) ( F `  z ) )  e.  ( F " U
) ) )
5840, 57mpbird 223 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  A. x  e.  Y  A. y  e.  ( F " U
) ( ( x ( +g  `  T
) y ) (
-g `  T )
x )  e.  ( F " U ) )
5928, 23, 20isnsg3 14667 . 2  |-  ( ( F " U )  e.  (NrmSGrp `  T
)  <->  ( ( F
" U )  e.  (SubGrp `  T )  /\  A. x  e.  Y  A. y  e.  ( F " U ) ( ( x ( +g  `  T ) y ) ( -g `  T
) x )  e.  ( F " U
) ) )
605, 58, 59sylanbrc 645 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  (NrmSGrp `  S )  /\  ran  F  =  Y )  ->  ( F " U )  e.  (NrmSGrp `  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556    C_ wss 3165   ran crn 4706   "cima 4708    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   Grpcgrp 14378   -gcsg 14381  SubGrpcsubg 14631  NrmSGrpcnsg 14632    GrpHom cghm 14696
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-nsg 14635  df-ghm 14697
  Copyright terms: Public domain W3C validator