MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmplusg Structured version   Unicode version

Theorem ghmplusg 15463
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
ghmplusg.p  |-  .+  =  ( +g  `  N )
Assertion
Ref Expression
ghmplusg  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  ( F  o F  .+  G )  e.  ( M  GrpHom  N ) )

Proof of Theorem ghmplusg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2438 . 2  |-  ( Base `  M )  =  (
Base `  M )
2 eqid 2438 . 2  |-  ( Base `  N )  =  (
Base `  N )
3 eqid 2438 . 2  |-  ( +g  `  M )  =  ( +g  `  M )
4 ghmplusg.p . 2  |-  .+  =  ( +g  `  N )
5 ghmgrp1 15010 . . 3  |-  ( G  e.  ( M  GrpHom  N )  ->  M  e.  Grp )
653ad2ant3 981 . 2  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  M  e.  Grp )
7 ghmgrp2 15011 . . 3  |-  ( G  e.  ( M  GrpHom  N )  ->  N  e.  Grp )
873ad2ant3 981 . 2  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  N  e.  Grp )
92, 4grpcl 14820 . . . . 5  |-  ( ( N  e.  Grp  /\  x  e.  ( Base `  N )  /\  y  e.  ( Base `  N
) )  ->  (
x  .+  y )  e.  ( Base `  N
) )
1093expb 1155 . . . 4  |-  ( ( N  e.  Grp  /\  ( x  e.  ( Base `  N )  /\  y  e.  ( Base `  N ) ) )  ->  ( x  .+  y )  e.  (
Base `  N )
)
118, 10sylan 459 . . 3  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  N
)  /\  y  e.  ( Base `  N )
) )  ->  (
x  .+  y )  e.  ( Base `  N
) )
121, 2ghmf 15012 . . . 4  |-  ( F  e.  ( M  GrpHom  N )  ->  F :
( Base `  M ) --> ( Base `  N )
)
13123ad2ant2 980 . . 3  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  F : (
Base `  M ) --> ( Base `  N )
)
141, 2ghmf 15012 . . . 4  |-  ( G  e.  ( M  GrpHom  N )  ->  G :
( Base `  M ) --> ( Base `  N )
)
15143ad2ant3 981 . . 3  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  G : (
Base `  M ) --> ( Base `  N )
)
16 fvex 5744 . . . 4  |-  ( Base `  M )  e.  _V
1716a1i 11 . . 3  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  ( Base `  M
)  e.  _V )
18 inidm 3552 . . 3  |-  ( (
Base `  M )  i^i  ( Base `  M
) )  =  (
Base `  M )
1911, 13, 15, 17, 17, 18off 6322 . 2  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  ( F  o F  .+  G ) : ( Base `  M
) --> ( Base `  N
) )
201, 3, 4ghmlin 15013 . . . . . . 7  |-  ( ( F  e.  ( M 
GrpHom  N )  /\  x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
)  ->  ( F `  ( x ( +g  `  M ) y ) )  =  ( ( F `  x ) 
.+  ( F `  y ) ) )
21203expb 1155 . . . . . 6  |-  ( ( F  e.  ( M 
GrpHom  N )  /\  (
x  e.  ( Base `  M )  /\  y  e.  ( Base `  M
) ) )  -> 
( F `  (
x ( +g  `  M
) y ) )  =  ( ( F `
 x )  .+  ( F `  y ) ) )
22213ad2antl2 1121 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  ( x
( +g  `  M ) y ) )  =  ( ( F `  x )  .+  ( F `  y )
) )
231, 3, 4ghmlin 15013 . . . . . . 7  |-  ( ( G  e.  ( M 
GrpHom  N )  /\  x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
)  ->  ( G `  ( x ( +g  `  M ) y ) )  =  ( ( G `  x ) 
.+  ( G `  y ) ) )
24233expb 1155 . . . . . 6  |-  ( ( G  e.  ( M 
GrpHom  N )  /\  (
x  e.  ( Base `  M )  /\  y  e.  ( Base `  M
) ) )  -> 
( G `  (
x ( +g  `  M
) y ) )  =  ( ( G `
 x )  .+  ( G `  y ) ) )
25243ad2antl3 1122 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  ( x
( +g  `  M ) y ) )  =  ( ( G `  x )  .+  ( G `  y )
) )
2622, 25oveq12d 6101 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F `  (
x ( +g  `  M
) y ) ) 
.+  ( G `  ( x ( +g  `  M ) y ) ) )  =  ( ( ( F `  x )  .+  ( F `  y )
)  .+  ( ( G `  x )  .+  ( G `  y
) ) ) )
27 simpl1 961 . . . . . 6  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  N  e.  Abel )
28 ablcmn 15420 . . . . . 6  |-  ( N  e.  Abel  ->  N  e. CMnd
)
2927, 28syl 16 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  N  e. CMnd )
3013ffvelrnda 5872 . . . . . 6  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  x  e.  ( Base `  M
) )  ->  ( F `  x )  e.  ( Base `  N
) )
3130adantrr 699 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  x )  e.  ( Base `  N
) )
3213ffvelrnda 5872 . . . . . 6  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  y  e.  ( Base `  M
) )  ->  ( F `  y )  e.  ( Base `  N
) )
3332adantrl 698 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( F `  y )  e.  ( Base `  N
) )
3415ffvelrnda 5872 . . . . . 6  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  x  e.  ( Base `  M
) )  ->  ( G `  x )  e.  ( Base `  N
) )
3534adantrr 699 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  x )  e.  ( Base `  N
) )
3615ffvelrnda 5872 . . . . . 6  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  y  e.  ( Base `  M
) )  ->  ( G `  y )  e.  ( Base `  N
) )
3736adantrl 698 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( G `  y )  e.  ( Base `  N
) )
382, 4cmn4 15433 . . . . 5  |-  ( ( N  e. CMnd  /\  (
( F `  x
)  e.  ( Base `  N )  /\  ( F `  y )  e.  ( Base `  N
) )  /\  (
( G `  x
)  e.  ( Base `  N )  /\  ( G `  y )  e.  ( Base `  N
) ) )  -> 
( ( ( F `
 x )  .+  ( F `  y ) )  .+  ( ( G `  x ) 
.+  ( G `  y ) ) )  =  ( ( ( F `  x ) 
.+  ( G `  x ) )  .+  ( ( F `  y )  .+  ( G `  y )
) ) )
3929, 31, 33, 35, 37, 38syl122anc 1194 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( ( F `  x )  .+  ( F `  y )
)  .+  ( ( G `  x )  .+  ( G `  y
) ) )  =  ( ( ( F `
 x )  .+  ( G `  x ) )  .+  ( ( F `  y ) 
.+  ( G `  y ) ) ) )
4026, 39eqtrd 2470 . . 3  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F `  (
x ( +g  `  M
) y ) ) 
.+  ( G `  ( x ( +g  `  M ) y ) ) )  =  ( ( ( F `  x )  .+  ( G `  x )
)  .+  ( ( F `  y )  .+  ( G `  y
) ) ) )
41 ffn 5593 . . . . . 6  |-  ( F : ( Base `  M
) --> ( Base `  N
)  ->  F  Fn  ( Base `  M )
)
4213, 41syl 16 . . . . 5  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  F  Fn  ( Base `  M ) )
4342adantr 453 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  F  Fn  ( Base `  M
) )
44 ffn 5593 . . . . . 6  |-  ( G : ( Base `  M
) --> ( Base `  N
)  ->  G  Fn  ( Base `  M )
)
4515, 44syl 16 . . . . 5  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  G  Fn  ( Base `  M ) )
4645adantr 453 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  G  Fn  ( Base `  M
) )
4716a1i 11 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  ( Base `  M )  e. 
_V )
481, 3grpcl 14820 . . . . . 6  |-  ( ( M  e.  Grp  /\  x  e.  ( Base `  M )  /\  y  e.  ( Base `  M
) )  ->  (
x ( +g  `  M
) y )  e.  ( Base `  M
) )
49483expb 1155 . . . . 5  |-  ( ( M  e.  Grp  /\  ( x  e.  ( Base `  M )  /\  y  e.  ( Base `  M ) ) )  ->  ( x ( +g  `  M ) y )  e.  (
Base `  M )
)
506, 49sylan 459 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
x ( +g  `  M
) y )  e.  ( Base `  M
) )
51 fnfvof 6319 . . . 4  |-  ( ( ( F  Fn  ( Base `  M )  /\  G  Fn  ( Base `  M ) )  /\  ( ( Base `  M
)  e.  _V  /\  ( x ( +g  `  M ) y )  e.  ( Base `  M
) ) )  -> 
( ( F  o F  .+  G ) `  ( x ( +g  `  M ) y ) )  =  ( ( F `  ( x ( +g  `  M
) y ) ) 
.+  ( G `  ( x ( +g  `  M ) y ) ) ) )
5243, 46, 47, 50, 51syl22anc 1186 . . 3  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  o F 
.+  G ) `  ( x ( +g  `  M ) y ) )  =  ( ( F `  ( x ( +g  `  M
) y ) ) 
.+  ( G `  ( x ( +g  `  M ) y ) ) ) )
53 simprl 734 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  x  e.  ( Base `  M
) )
54 fnfvof 6319 . . . . 5  |-  ( ( ( F  Fn  ( Base `  M )  /\  G  Fn  ( Base `  M ) )  /\  ( ( Base `  M
)  e.  _V  /\  x  e.  ( Base `  M ) ) )  ->  ( ( F  o F  .+  G
) `  x )  =  ( ( F `
 x )  .+  ( G `  x ) ) )
5543, 46, 47, 53, 54syl22anc 1186 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  o F 
.+  G ) `  x )  =  ( ( F `  x
)  .+  ( G `  x ) ) )
56 simprr 735 . . . . 5  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  y  e.  ( Base `  M
) )
57 fnfvof 6319 . . . . 5  |-  ( ( ( F  Fn  ( Base `  M )  /\  G  Fn  ( Base `  M ) )  /\  ( ( Base `  M
)  e.  _V  /\  y  e.  ( Base `  M ) ) )  ->  ( ( F  o F  .+  G
) `  y )  =  ( ( F `
 y )  .+  ( G `  y ) ) )
5843, 46, 47, 56, 57syl22anc 1186 . . . 4  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  o F 
.+  G ) `  y )  =  ( ( F `  y
)  .+  ( G `  y ) ) )
5955, 58oveq12d 6101 . . 3  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( ( F  o F  .+  G ) `  x )  .+  (
( F  o F 
.+  G ) `  y ) )  =  ( ( ( F `
 x )  .+  ( G `  x ) )  .+  ( ( F `  y ) 
.+  ( G `  y ) ) ) )
6040, 52, 593eqtr4d 2480 . 2  |-  ( ( ( N  e.  Abel  /\  F  e.  ( M 
GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  /\  ( x  e.  ( Base `  M
)  /\  y  e.  ( Base `  M )
) )  ->  (
( F  o F 
.+  G ) `  ( x ( +g  `  M ) y ) )  =  ( ( ( F  o F 
.+  G ) `  x )  .+  (
( F  o F 
.+  G ) `  y ) ) )
611, 2, 3, 4, 6, 8, 19, 60isghmd 15017 1  |-  ( ( N  e.  Abel  /\  F  e.  ( M  GrpHom  N )  /\  G  e.  ( M  GrpHom  N ) )  ->  ( F  o F  .+  G )  e.  ( M  GrpHom  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   _Vcvv 2958    Fn wfn 5451   -->wf 5452   ` cfv 5456  (class class class)co 6083    o Fcof 6305   Basecbs 13471   +g cplusg 13531   Grpcgrp 14687    GrpHom cghm 15005  CMndccmn 15414   Abelcabel 15415
This theorem is referenced by:  lmhmplusg  16122  nmotri  18775  nghmplusg  18776
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-mnd 14692  df-grp 14814  df-ghm 15006  df-cmn 15416  df-abl 15417
  Copyright terms: Public domain W3C validator