MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmrn Unicode version

Theorem ghmrn 14712
Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmrn  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  e.  (SubGrp `  T )
)

Proof of Theorem ghmrn
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
2 eqid 2296 . . . 4  |-  ( Base `  T )  =  (
Base `  T )
31, 2ghmf 14703 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
4 frn 5411 . . 3  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  ran  F  C_  ( Base `  T )
)
53, 4syl 15 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  C_  ( Base `  T )
)
6 fdm 5409 . . . . 5  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  dom  F  =  ( Base `  S
) )
73, 6syl 15 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  dom  F  =  ( Base `  S
) )
8 ghmgrp1 14701 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
91grpbn0 14527 . . . . 5  |-  ( S  e.  Grp  ->  ( Base `  S )  =/=  (/) )
108, 9syl 15 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( Base `  S )  =/=  (/) )
117, 10eqnetrd 2477 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  dom  F  =/=  (/) )
12 dm0rn0 4911 . . . 4  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
1312necon3bii 2491 . . 3  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
1411, 13sylib 188 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  =/=  (/) )
15 eqid 2296 . . . . . . . . . 10  |-  ( +g  `  S )  =  ( +g  `  S )
16 eqid 2296 . . . . . . . . . 10  |-  ( +g  `  T )  =  ( +g  `  T )
171, 15, 16ghmlin 14704 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( F `  ( c ( +g  `  S ) a ) )  =  ( ( F `  c ) ( +g  `  T
) ( F `  a ) ) )
18 ffn 5405 . . . . . . . . . . . 12  |-  ( F : ( Base `  S
) --> ( Base `  T
)  ->  F  Fn  ( Base `  S )
)
193, 18syl 15 . . . . . . . . . . 11  |-  ( F  e.  ( S  GrpHom  T )  ->  F  Fn  ( Base `  S )
)
20193ad2ant1 976 . . . . . . . . . 10  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  F  Fn  ( Base `  S )
)
211, 15grpcl 14511 . . . . . . . . . . 11  |-  ( ( S  e.  Grp  /\  c  e.  ( Base `  S )  /\  a  e.  ( Base `  S
) )  ->  (
c ( +g  `  S
) a )  e.  ( Base `  S
) )
228, 21syl3an1 1215 . . . . . . . . . 10  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( c
( +g  `  S ) a )  e.  (
Base `  S )
)
23 fnfvelrn 5678 . . . . . . . . . 10  |-  ( ( F  Fn  ( Base `  S )  /\  (
c ( +g  `  S
) a )  e.  ( Base `  S
) )  ->  ( F `  ( c
( +g  `  S ) a ) )  e. 
ran  F )
2420, 22, 23syl2anc 642 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( F `  ( c ( +g  `  S ) a ) )  e.  ran  F
)
2517, 24eqeltrrd 2371 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
)  /\  a  e.  ( Base `  S )
)  ->  ( ( F `  c )
( +g  `  T ) ( F `  a
) )  e.  ran  F )
26253expia 1153 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
a  e.  ( Base `  S )  ->  (
( F `  c
) ( +g  `  T
) ( F `  a ) )  e. 
ran  F ) )
2726ralrimiv 2638 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  A. a  e.  ( Base `  S
) ( ( F `
 c ) ( +g  `  T ) ( F `  a
) )  e.  ran  F )
28 oveq2 5882 . . . . . . . . . 10  |-  ( b  =  ( F `  a )  ->  (
( F `  c
) ( +g  `  T
) b )  =  ( ( F `  c ) ( +g  `  T ) ( F `
 a ) ) )
2928eleq1d 2362 . . . . . . . . 9  |-  ( b  =  ( F `  a )  ->  (
( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  <->  ( ( F `  c )
( +g  `  T ) ( F `  a
) )  e.  ran  F ) )
3029ralrn 5684 . . . . . . . 8  |-  ( F  Fn  ( Base `  S
)  ->  ( A. b  e.  ran  F ( ( F `  c
) ( +g  `  T
) b )  e. 
ran  F  <->  A. a  e.  (
Base `  S )
( ( F `  c ) ( +g  `  T ) ( F `
 a ) )  e.  ran  F ) )
3119, 30syl 15 . . . . . . 7  |-  ( F  e.  ( S  GrpHom  T )  ->  ( A. b  e.  ran  F ( ( F `  c
) ( +g  `  T
) b )  e. 
ran  F  <->  A. a  e.  (
Base `  S )
( ( F `  c ) ( +g  `  T ) ( F `
 a ) )  e.  ran  F ) )
3231adantr 451 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  <->  A. a  e.  ( Base `  S
) ( ( F `
 c ) ( +g  `  T ) ( F `  a
) )  e.  ran  F ) )
3327, 32mpbird 223 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F )
34 eqid 2296 . . . . . . 7  |-  ( inv g `  S )  =  ( inv g `  S )
35 eqid 2296 . . . . . . 7  |-  ( inv g `  T )  =  ( inv g `  T )
361, 34, 35ghminv 14706 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( F `  ( ( inv g `  S ) `
 c ) )  =  ( ( inv g `  T ) `
 ( F `  c ) ) )
3719adantr 451 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  F  Fn  ( Base `  S
) )
381, 34grpinvcl 14543 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  c  e.  ( Base `  S ) )  -> 
( ( inv g `  S ) `  c
)  e.  ( Base `  S ) )
398, 38sylan 457 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
( inv g `  S ) `  c
)  e.  ( Base `  S ) )
40 fnfvelrn 5678 . . . . . . 7  |-  ( ( F  Fn  ( Base `  S )  /\  (
( inv g `  S ) `  c
)  e.  ( Base `  S ) )  -> 
( F `  (
( inv g `  S ) `  c
) )  e.  ran  F )
4137, 39, 40syl2anc 642 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( F `  ( ( inv g `  S ) `
 c ) )  e.  ran  F )
4236, 41eqeltrrd 2371 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  (
( inv g `  T ) `  ( F `  c )
)  e.  ran  F
)
4333, 42jca 518 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  c  e.  ( Base `  S
) )  ->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T ) b )  e.  ran  F  /\  ( ( inv g `  T ) `  ( F `  c )
)  e.  ran  F
) )
4443ralrimiva 2639 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  A. c  e.  ( Base `  S
) ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( inv g `  T ) `  ( F `  c )
)  e.  ran  F
) )
45 oveq1 5881 . . . . . . . 8  |-  ( a  =  ( F `  c )  ->  (
a ( +g  `  T
) b )  =  ( ( F `  c ) ( +g  `  T ) b ) )
4645eleq1d 2362 . . . . . . 7  |-  ( a  =  ( F `  c )  ->  (
( a ( +g  `  T ) b )  e.  ran  F  <->  ( ( F `  c )
( +g  `  T ) b )  e.  ran  F ) )
4746ralbidv 2576 . . . . . 6  |-  ( a  =  ( F `  c )  ->  ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  <->  A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F ) )
48 fveq2 5541 . . . . . . 7  |-  ( a  =  ( F `  c )  ->  (
( inv g `  T ) `  a
)  =  ( ( inv g `  T
) `  ( F `  c ) ) )
4948eleq1d 2362 . . . . . 6  |-  ( a  =  ( F `  c )  ->  (
( ( inv g `  T ) `  a
)  e.  ran  F  <->  ( ( inv g `  T ) `  ( F `  c )
)  e.  ran  F
) )
5047, 49anbi12d 691 . . . . 5  |-  ( a  =  ( F `  c )  ->  (
( A. b  e. 
ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( inv g `  T ) `  a
)  e.  ran  F
)  <->  ( A. b  e.  ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( inv g `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5150ralrn 5684 . . . 4  |-  ( F  Fn  ( Base `  S
)  ->  ( A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  /\  ( ( inv g `  T ) `  a
)  e.  ran  F
)  <->  A. c  e.  (
Base `  S )
( A. b  e. 
ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( inv g `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5219, 51syl 15 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  ( A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T ) b )  e.  ran  F  /\  ( ( inv g `  T ) `  a
)  e.  ran  F
)  <->  A. c  e.  (
Base `  S )
( A. b  e. 
ran  F ( ( F `  c ) ( +g  `  T
) b )  e. 
ran  F  /\  (
( inv g `  T ) `  ( F `  c )
)  e.  ran  F
) ) )
5344, 52mpbird 223 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  A. a  e.  ran  F ( A. b  e.  ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( inv g `  T ) `  a
)  e.  ran  F
) )
54 ghmgrp2 14702 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
552, 16, 35issubg2 14652 . . 3  |-  ( T  e.  Grp  ->  ( ran  F  e.  (SubGrp `  T )  <->  ( ran  F 
C_  ( Base `  T
)  /\  ran  F  =/=  (/)  /\  A. a  e. 
ran  F ( A. b  e.  ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( inv g `  T ) `  a
)  e.  ran  F
) ) ) )
5654, 55syl 15 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( ran  F  e.  (SubGrp `  T
)  <->  ( ran  F  C_  ( Base `  T
)  /\  ran  F  =/=  (/)  /\  A. a  e. 
ran  F ( A. b  e.  ran  F ( a ( +g  `  T
) b )  e. 
ran  F  /\  (
( inv g `  T ) `  a
)  e.  ran  F
) ) ) )
575, 14, 53, 56mpbir3and 1135 1  |-  ( F  e.  ( S  GrpHom  T )  ->  ran  F  e.  (SubGrp `  T )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556    C_ wss 3165   (/)c0 3468   dom cdm 4705   ran crn 4706    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   Grpcgrp 14378   inv gcminusg 14379  SubGrpcsubg 14631    GrpHom cghm 14696
This theorem is referenced by:  ghmima  14719  cayley  14805
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-subg 14634  df-ghm 14697
  Copyright terms: Public domain W3C validator