Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomco Unicode version

Theorem ghomco 26573
Description: The composition of two group homomorphisms is a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
ghomco  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp )  /\  ( S  e.  ( G GrpOpHom  H )  /\  T  e.  ( H GrpOpHom  K )
) )  ->  ( T  o.  S )  e.  ( G GrpOpHom  K )
)

Proof of Theorem ghomco
Dummy variables  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fco 5398 . . . . . . 7  |-  ( ( T : ran  H --> ran  K  /\  S : ran  G --> ran  H )  ->  ( T  o.  S
) : ran  G --> ran  K )
21ancoms 439 . . . . . 6  |-  ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  ->  ( T  o.  S
) : ran  G --> ran  K )
32ad2ant2r 727 . . . . 5  |-  ( ( ( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) )  -> 
( T  o.  S
) : ran  G --> ran  K )
43a1i 10 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( (
( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) )  -> 
( T  o.  S
) : ran  G --> ran  K ) )
5 ffvelrn 5663 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S : ran  G --> ran  H  /\  x  e. 
ran  G )  -> 
( S `  x
)  e.  ran  H
)
6 ffvelrn 5663 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S : ran  G --> ran  H  /\  y  e. 
ran  G )  -> 
( S `  y
)  e.  ran  H
)
75, 6anim12da 26332 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( S : ran  G --> ran  H  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( S `  x )  e.  ran  H  /\  ( S `  y )  e.  ran  H ) )
8 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( u  =  ( S `  x )  ->  ( T `  u )  =  ( T `  ( S `  x ) ) )
98oveq1d 5873 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( u  =  ( S `  x )  ->  (
( T `  u
) K ( T `
 v ) )  =  ( ( T `
 ( S `  x ) ) K ( T `  v
) ) )
10 oveq1 5865 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( u  =  ( S `  x )  ->  (
u H v )  =  ( ( S `
 x ) H v ) )
1110fveq2d 5529 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( u  =  ( S `  x )  ->  ( T `  ( u H v ) )  =  ( T `  ( ( S `  x ) H v ) ) )
129, 11eqeq12d 2297 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( u  =  ( S `  x )  ->  (
( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) )  <->  ( ( T `  ( S `  x ) ) K ( T `  v
) )  =  ( T `  ( ( S `  x ) H v ) ) ) )
13 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( v  =  ( S `  y )  ->  ( T `  v )  =  ( T `  ( S `  y ) ) )
1413oveq2d 5874 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  =  ( S `  y )  ->  (
( T `  ( S `  x )
) K ( T `
 v ) )  =  ( ( T `
 ( S `  x ) ) K ( T `  ( S `  y )
) ) )
15 oveq2 5866 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( v  =  ( S `  y )  ->  (
( S `  x
) H v )  =  ( ( S `
 x ) H ( S `  y
) ) )
1615fveq2d 5529 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  =  ( S `  y )  ->  ( T `  ( ( S `  x ) H v ) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) )
1714, 16eqeq12d 2297 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  =  ( S `  y )  ->  (
( ( T `  ( S `  x ) ) K ( T `
 v ) )  =  ( T `  ( ( S `  x ) H v ) )  <->  ( ( T `  ( S `  x ) ) K ( T `  ( S `  y )
) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) ) )
1812, 17rspc2va 2891 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( S `  x )  e.  ran  H  /\  ( S `  y )  e.  ran  H )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) )  ->  (
( T `  ( S `  x )
) K ( T `
 ( S `  y ) ) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) )
197, 18sylan 457 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( S : ran  G --> ran  H  /\  (
x  e.  ran  G  /\  y  e.  ran  G ) )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  -> 
( ( T `  ( S `  x ) ) K ( T `
 ( S `  y ) ) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) )
2019an32s 779 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( S : ran  G --> ran  H  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  (
( T `  ( S `  x )
) K ( T `
 ( S `  y ) ) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) )
2120adantllr 699 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) )  /\  (
x  e.  ran  G  /\  y  e.  ran  G ) )  ->  (
( T `  ( S `  x )
) K ( T `
 ( S `  y ) ) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) )
2221adantllr 699 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  (
( T `  ( S `  x )
) K ( T `
 ( S `  y ) ) )  =  ( T `  ( ( S `  x ) H ( S `  y ) ) ) )
23 fveq2 5525 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) )  ->  ( T `  ( ( S `  x ) H ( S `  y ) ) )  =  ( T `  ( S `  ( x G y ) ) ) )
2422, 23sylan9eq 2335 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) ) )  /\  ( x  e. 
ran  G  /\  y  e.  ran  G ) )  /\  ( ( S `
 x ) H ( S `  y
) )  =  ( S `  ( x G y ) ) )  ->  ( ( T `  ( S `  x ) ) K ( T `  ( S `  y )
) )  =  ( T `  ( S `
 ( x G y ) ) ) )
2524anasss 628 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( ( x  e. 
ran  G  /\  y  e.  ran  G )  /\  ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) ) ) )  ->  ( ( T `  ( S `  x ) ) K ( T `  ( S `  y )
) )  =  ( T `  ( S `
 ( x G y ) ) ) )
26 fvco3 5596 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S : ran  G --> ran  H  /\  x  e. 
ran  G )  -> 
( ( T  o.  S ) `  x
)  =  ( T `
 ( S `  x ) ) )
2726ad2ant2r 727 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( T  o.  S ) `  x )  =  ( T `  ( S `
 x ) ) )
28 fvco3 5596 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S : ran  G --> ran  H  /\  y  e. 
ran  G )  -> 
( ( T  o.  S ) `  y
)  =  ( T `
 ( S `  y ) ) )
2928ad2ant2rl 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( T  o.  S ) `  y )  =  ( T `  ( S `
 y ) ) )
3027, 29oveq12d 5876 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( ( T  o.  S ) `
 x ) K ( ( T  o.  S ) `  y
) )  =  ( ( T `  ( S `  x )
) K ( T `
 ( S `  y ) ) ) )
3130adantlr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  G  e.  GrpOp
)  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( ( T  o.  S ) `
 x ) K ( ( T  o.  S ) `  y
) )  =  ( ( T `  ( S `  x )
) K ( T `
 ( S `  y ) ) ) )
3231ad2ant2r 727 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( ( x  e. 
ran  G  /\  y  e.  ran  G )  /\  ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) ) ) )  ->  ( (
( T  o.  S
) `  x ) K ( ( T  o.  S ) `  y ) )  =  ( ( T `  ( S `  x ) ) K ( T `
 ( S `  y ) ) ) )
33 eqid 2283 . . . . . . . . . . . . . . . . . . . . . 22  |-  ran  G  =  ran  G
3433grpocl 20867 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  e.  GrpOp  /\  x  e.  ran  G  /\  y  e.  ran  G )  -> 
( x G y )  e.  ran  G
)
35343expb 1152 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e.  GrpOp  /\  (
x  e.  ran  G  /\  y  e.  ran  G ) )  ->  (
x G y )  e.  ran  G )
36 fvco3 5596 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S : ran  G --> ran  H  /\  ( x G y )  e. 
ran  G )  -> 
( ( T  o.  S ) `  (
x G y ) )  =  ( T `
 ( S `  ( x G y ) ) ) )
3736adantlr 695 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  ( x G y )  e. 
ran  G )  -> 
( ( T  o.  S ) `  (
x G y ) )  =  ( T `
 ( S `  ( x G y ) ) ) )
3835, 37sylan2 460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  ( G  e.  GrpOp  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) ) )  ->  ( ( T  o.  S ) `  ( x G y ) )  =  ( T `  ( S `
 ( x G y ) ) ) )
3938anassrs 629 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  G  e.  GrpOp
)  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  ( ( T  o.  S ) `  ( x G y ) )  =  ( T `  ( S `
 ( x G y ) ) ) )
4039ad2ant2r 727 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( ( x  e. 
ran  G  /\  y  e.  ran  G )  /\  ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) ) ) )  ->  ( ( T  o.  S ) `  ( x G y ) )  =  ( T `  ( S `
 ( x G y ) ) ) )
4125, 32, 403eqtr4d 2325 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( ( x  e. 
ran  G  /\  y  e.  ran  G )  /\  ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) ) ) )  ->  ( (
( T  o.  S
) `  x ) K ( ( T  o.  S ) `  y ) )  =  ( ( T  o.  S ) `  (
x G y ) ) )
4241expr 598 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  ( x  e.  ran  G  /\  y  e.  ran  G ) )  ->  (
( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) )  -> 
( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) )
4342anassrs 629 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) ) )  /\  x  e.  ran  G )  /\  y  e. 
ran  G )  -> 
( ( ( S `
 x ) H ( S `  y
) )  =  ( S `  ( x G y ) )  ->  ( ( ( T  o.  S ) `
 x ) K ( ( T  o.  S ) `  y
) )  =  ( ( T  o.  S
) `  ( x G y ) ) ) )
4443ralimdva 2621 . . . . . . . . . . . . 13  |-  ( ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K )  /\  G  e.  GrpOp )  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u
) K ( T `
 v ) )  =  ( T `  ( u H v ) ) )  /\  x  e.  ran  G )  ->  ( A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `  (
x G y ) )  ->  A. y  e.  ran  G ( ( ( T  o.  S
) `  x ) K ( ( T  o.  S ) `  y ) )  =  ( ( T  o.  S ) `  (
x G y ) ) ) )
4544ralimdva 2621 . . . . . . . . . . . 12  |-  ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  G  e.  GrpOp
)  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) )  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) )  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) )
4645an32s 779 . . . . . . . . . . 11  |-  ( ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) )  /\  G  e.  GrpOp )  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) )  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) )
4746ex 423 . . . . . . . . . 10  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) )  ->  ( G  e.  GrpOp  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) )  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) ) )
4847com23 72 . . . . . . . . 9  |-  ( ( ( S : ran  G --> ran  H  /\  T : ran  H --> ran  K
)  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) )  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) )  -> 
( G  e.  GrpOp  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) ) )
4948anasss 628 . . . . . . . 8  |-  ( ( S : ran  G --> ran  H  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) ) ) )  ->  ( A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) )  ->  ( G  e.  GrpOp  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S
) `  x ) K ( ( T  o.  S ) `  y ) )  =  ( ( T  o.  S ) `  (
x G y ) ) ) ) )
5049imp 418 . . . . . . 7  |-  ( ( ( S : ran  G --> ran  H  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) ) ) )  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `  (
x G y ) ) )  ->  ( G  e.  GrpOp  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S
) `  x ) K ( ( T  o.  S ) `  y ) )  =  ( ( T  o.  S ) `  (
x G y ) ) ) )
5150an32s 779 . . . . . 6  |-  ( ( ( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) )  -> 
( G  e.  GrpOp  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) )
5251com12 27 . . . . 5  |-  ( G  e.  GrpOp  ->  ( (
( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) )  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) )
53523ad2ant1 976 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( (
( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) )  ->  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) )
544, 53jcad 519 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( (
( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x
) H ( S `
 y ) )  =  ( S `  ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) )  -> 
( ( T  o.  S ) : ran  G --> ran  K  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x
) K ( ( T  o.  S ) `
 y ) )  =  ( ( T  o.  S ) `  ( x G y ) ) ) ) )
55 eqid 2283 . . . . . 6  |-  ran  H  =  ran  H
5633, 55elghom 21030 . . . . 5  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp )  ->  ( S  e.  ( G GrpOpHom  H )  <->  ( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) ) ) ) )
57563adant3 975 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( S  e.  ( G GrpOpHom  H )  <->  ( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `  (
x G y ) ) ) ) )
58 eqid 2283 . . . . . 6  |-  ran  K  =  ran  K
5955, 58elghom 21030 . . . . 5  |-  ( ( H  e.  GrpOp  /\  K  e.  GrpOp )  ->  ( T  e.  ( H GrpOpHom  K )  <->  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) ) ) ) )
60593adant1 973 . . . 4  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( T  e.  ( H GrpOpHom  K )  <->  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `  (
u H v ) ) ) ) )
6157, 60anbi12d 691 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( ( S  e.  ( G GrpOpHom  H )  /\  T  e.  ( H GrpOpHom  K )
)  <->  ( ( S : ran  G --> ran  H  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( S `  x ) H ( S `  y ) )  =  ( S `
 ( x G y ) ) )  /\  ( T : ran  H --> ran  K  /\  A. u  e.  ran  H A. v  e.  ran  H ( ( T `  u ) K ( T `  v ) )  =  ( T `
 ( u H v ) ) ) ) ) )
6233, 58elghom 21030 . . . 4  |-  ( ( G  e.  GrpOp  /\  K  e.  GrpOp )  ->  (
( T  o.  S
)  e.  ( G GrpOpHom  K )  <->  ( ( T  o.  S ) : ran  G --> ran  K  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S ) `  x ) K ( ( T  o.  S
) `  y )
)  =  ( ( T  o.  S ) `
 ( x G y ) ) ) ) )
63623adant2 974 . . 3  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( ( T  o.  S )  e.  ( G GrpOpHom  K )  <->  ( ( T  o.  S
) : ran  G --> ran  K  /\  A. x  e.  ran  G A. y  e.  ran  G ( ( ( T  o.  S
) `  x ) K ( ( T  o.  S ) `  y ) )  =  ( ( T  o.  S ) `  (
x G y ) ) ) ) )
6454, 61, 633imtr4d 259 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp
)  ->  ( ( S  e.  ( G GrpOpHom  H )  /\  T  e.  ( H GrpOpHom  K )
)  ->  ( T  o.  S )  e.  ( G GrpOpHom  K ) ) )
6564imp 418 1  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  K  e.  GrpOp )  /\  ( S  e.  ( G GrpOpHom  H )  /\  T  e.  ( H GrpOpHom  K )
) )  ->  ( T  o.  S )  e.  ( G GrpOpHom  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   ran crn 4690    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   GrpOpcgr 20853   GrpOpHom cghom 21024
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-grpo 20858  df-ghom 21025
  Copyright terms: Public domain W3C validator