Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomdiv Unicode version

Theorem ghomdiv 26677
Description: Group homomorphisms preserve division. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
ghomdiv.1  |-  X  =  ran  G
ghomdiv.2  |-  D  =  (  /g  `  G
)
ghomdiv.3  |-  C  =  (  /g  `  H
)
Assertion
Ref Expression
ghomdiv  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  ( A D B ) )  =  ( ( F `
 A ) C ( F `  B
) ) )

Proof of Theorem ghomdiv
StepHypRef Expression
1 simpl2 959 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  ->  H  e.  GrpOp )
2 ghomdiv.1 . . . . . . 7  |-  X  =  ran  G
3 eqid 2296 . . . . . . 7  |-  ran  H  =  ran  H
42, 3ghomf 26675 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F : X --> ran  H )
5 ffvelrn 5679 . . . . . 6  |-  ( ( F : X --> ran  H  /\  A  e.  X
)  ->  ( F `  A )  e.  ran  H )
64, 5sylan 457 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  A  e.  X )  ->  ( F `  A )  e.  ran  H )
76adantrr 697 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  A
)  e.  ran  H
)
8 ffvelrn 5679 . . . . . 6  |-  ( ( F : X --> ran  H  /\  B  e.  X
)  ->  ( F `  B )  e.  ran  H )
94, 8sylan 457 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  B  e.  X )  ->  ( F `  B )  e.  ran  H )
109adantrl 696 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  B
)  e.  ran  H
)
11 ghomdiv.3 . . . . 5  |-  C  =  (  /g  `  H
)
123, 11grponpcan 20935 . . . 4  |-  ( ( H  e.  GrpOp  /\  ( F `  A )  e.  ran  H  /\  ( F `  B )  e.  ran  H )  -> 
( ( ( F `
 A ) C ( F `  B
) ) H ( F `  B ) )  =  ( F `
 A ) )
131, 7, 10, 12syl3anc 1182 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( ( F `
 A ) C ( F `  B
) ) H ( F `  B ) )  =  ( F `
 A ) )
14 ghomdiv.2 . . . . . . 7  |-  D  =  (  /g  `  G
)
152, 14grponpcan 20935 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A D B ) G B )  =  A )
16153expb 1152 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( ( A D B ) G B )  =  A )
17163ad2antl1 1117 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( A D B ) G B )  =  A )
1817fveq2d 5545 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  (
( A D B ) G B ) )  =  ( F `
 A ) )
192, 14grpodivcl 20930 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  X )
20193expb 1152 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  e.  X
)
21 simprr 733 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  B  e.  X )
2220, 21jca 518 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( ( A D B )  e.  X  /\  B  e.  X ) )
23223ad2antl1 1117 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( A D B )  e.  X  /\  B  e.  X
) )
242ghomlin 21047 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( ( A D B )  e.  X  /\  B  e.  X ) )  -> 
( ( F `  ( A D B ) ) H ( F `
 B ) )  =  ( F `  ( ( A D B ) G B ) ) )
2524eqcomd 2301 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( ( A D B )  e.  X  /\  B  e.  X ) )  -> 
( F `  (
( A D B ) G B ) )  =  ( ( F `  ( A D B ) ) H ( F `  B ) ) )
2623, 25syldan 456 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  (
( A D B ) G B ) )  =  ( ( F `  ( A D B ) ) H ( F `  B ) ) )
2713, 18, 263eqtr2rd 2335 . 2  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( F `  ( A D B ) ) H ( F `
 B ) )  =  ( ( ( F `  A ) C ( F `  B ) ) H ( F `  B
) ) )
28203ad2antl1 1117 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  e.  X )
29 ffvelrn 5679 . . . . 5  |-  ( ( F : X --> ran  H  /\  ( A D B )  e.  X )  ->  ( F `  ( A D B ) )  e.  ran  H
)
304, 29sylan 457 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A D B )  e.  X
)  ->  ( F `  ( A D B ) )  e.  ran  H )
3128, 30syldan 456 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  ( A D B ) )  e.  ran  H )
323, 11grpodivcl 20930 . . . 4  |-  ( ( H  e.  GrpOp  /\  ( F `  A )  e.  ran  H  /\  ( F `  B )  e.  ran  H )  -> 
( ( F `  A ) C ( F `  B ) )  e.  ran  H
)
331, 7, 10, 32syl3anc 1182 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( F `  A ) C ( F `  B ) )  e.  ran  H
)
343grporcan 20904 . . 3  |-  ( ( H  e.  GrpOp  /\  (
( F `  ( A D B ) )  e.  ran  H  /\  ( ( F `  A ) C ( F `  B ) )  e.  ran  H  /\  ( F `  B
)  e.  ran  H
) )  ->  (
( ( F `  ( A D B ) ) H ( F `
 B ) )  =  ( ( ( F `  A ) C ( F `  B ) ) H ( F `  B
) )  <->  ( F `  ( A D B ) )  =  ( ( F `  A
) C ( F `
 B ) ) ) )
351, 31, 33, 10, 34syl13anc 1184 . 2  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( ( F `
 ( A D B ) ) H ( F `  B
) )  =  ( ( ( F `  A ) C ( F `  B ) ) H ( F `
 B ) )  <-> 
( F `  ( A D B ) )  =  ( ( F `
 A ) C ( F `  B
) ) ) )
3627, 35mpbid 201 1  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  ( A D B ) )  =  ( ( F `
 A ) C ( F `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   ran crn 4706   -->wf 5267   ` cfv 5271  (class class class)co 5874   GrpOpcgr 20869    /g cgs 20872   GrpOpHom cghom 21040
This theorem is referenced by:  grpokerinj  26678  rngohomsub  26707
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-grpo 20874  df-gid 20875  df-ginv 20876  df-gdiv 20877  df-ghom 21041
  Copyright terms: Public domain W3C validator