Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomdiv Structured version   Unicode version

Theorem ghomdiv 26550
Description: Group homomorphisms preserve division. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
ghomdiv.1  |-  X  =  ran  G
ghomdiv.2  |-  D  =  (  /g  `  G
)
ghomdiv.3  |-  C  =  (  /g  `  H
)
Assertion
Ref Expression
ghomdiv  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  ( A D B ) )  =  ( ( F `
 A ) C ( F `  B
) ) )

Proof of Theorem ghomdiv
StepHypRef Expression
1 simpl2 961 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  ->  H  e.  GrpOp )
2 ghomdiv.1 . . . . . . 7  |-  X  =  ran  G
3 eqid 2435 . . . . . . 7  |-  ran  H  =  ran  H
42, 3ghomf 26548 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F : X --> ran  H )
54ffvelrnda 5862 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  A  e.  X )  ->  ( F `  A )  e.  ran  H )
65adantrr 698 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  A
)  e.  ran  H
)
74ffvelrnda 5862 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  B  e.  X )  ->  ( F `  B )  e.  ran  H )
87adantrl 697 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  B
)  e.  ran  H
)
9 ghomdiv.3 . . . . 5  |-  C  =  (  /g  `  H
)
103, 9grponpcan 21832 . . . 4  |-  ( ( H  e.  GrpOp  /\  ( F `  A )  e.  ran  H  /\  ( F `  B )  e.  ran  H )  -> 
( ( ( F `
 A ) C ( F `  B
) ) H ( F `  B ) )  =  ( F `
 A ) )
111, 6, 8, 10syl3anc 1184 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( ( F `
 A ) C ( F `  B
) ) H ( F `  B ) )  =  ( F `
 A ) )
12 ghomdiv.2 . . . . . . 7  |-  D  =  (  /g  `  G
)
132, 12grponpcan 21832 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A D B ) G B )  =  A )
14133expb 1154 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( ( A D B ) G B )  =  A )
15143ad2antl1 1119 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( A D B ) G B )  =  A )
1615fveq2d 5724 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  (
( A D B ) G B ) )  =  ( F `
 A ) )
172, 12grpodivcl 21827 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  X )
18173expb 1154 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  e.  X
)
19 simprr 734 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  B  e.  X )
2018, 19jca 519 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( ( A D B )  e.  X  /\  B  e.  X ) )
21203ad2antl1 1119 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( A D B )  e.  X  /\  B  e.  X
) )
222ghomlin 21944 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( ( A D B )  e.  X  /\  B  e.  X ) )  -> 
( ( F `  ( A D B ) ) H ( F `
 B ) )  =  ( F `  ( ( A D B ) G B ) ) )
2322eqcomd 2440 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( ( A D B )  e.  X  /\  B  e.  X ) )  -> 
( F `  (
( A D B ) G B ) )  =  ( ( F `  ( A D B ) ) H ( F `  B ) ) )
2421, 23syldan 457 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  (
( A D B ) G B ) )  =  ( ( F `  ( A D B ) ) H ( F `  B ) ) )
2511, 16, 243eqtr2rd 2474 . 2  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( F `  ( A D B ) ) H ( F `
 B ) )  =  ( ( ( F `  A ) C ( F `  B ) ) H ( F `  B
) ) )
26183ad2antl1 1119 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  e.  X )
274ffvelrnda 5862 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A D B )  e.  X
)  ->  ( F `  ( A D B ) )  e.  ran  H )
2826, 27syldan 457 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  ( A D B ) )  e.  ran  H )
293, 9grpodivcl 21827 . . . 4  |-  ( ( H  e.  GrpOp  /\  ( F `  A )  e.  ran  H  /\  ( F `  B )  e.  ran  H )  -> 
( ( F `  A ) C ( F `  B ) )  e.  ran  H
)
301, 6, 8, 29syl3anc 1184 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( F `  A ) C ( F `  B ) )  e.  ran  H
)
313grporcan 21801 . . 3  |-  ( ( H  e.  GrpOp  /\  (
( F `  ( A D B ) )  e.  ran  H  /\  ( ( F `  A ) C ( F `  B ) )  e.  ran  H  /\  ( F `  B
)  e.  ran  H
) )  ->  (
( ( F `  ( A D B ) ) H ( F `
 B ) )  =  ( ( ( F `  A ) C ( F `  B ) ) H ( F `  B
) )  <->  ( F `  ( A D B ) )  =  ( ( F `  A
) C ( F `
 B ) ) ) )
321, 28, 30, 8, 31syl13anc 1186 . 2  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( ( F `
 ( A D B ) ) H ( F `  B
) )  =  ( ( ( F `  A ) C ( F `  B ) ) H ( F `
 B ) )  <-> 
( F `  ( A D B ) )  =  ( ( F `
 A ) C ( F `  B
) ) ) )
3325, 32mpbid 202 1  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  ( A D B ) )  =  ( ( F `
 A ) C ( F `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ran crn 4871   ` cfv 5446  (class class class)co 6073   GrpOpcgr 21766    /g cgs 21769   GrpOpHom cghom 21937
This theorem is referenced by:  grpokerinj  26551  rngohomsub  26580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-grpo 21771  df-gid 21772  df-ginv 21773  df-gdiv 21774  df-ghom 21938
  Copyright terms: Public domain W3C validator