MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicref Unicode version

Theorem gicref 15021
Description: Isomorphism is reflexive. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
gicref  |-  ( R  e.  Grp  ->  R  ~=ph𝑔  R )

Proof of Theorem gicref
StepHypRef Expression
1 eqid 2412 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
21idghm 14984 . . 3  |-  ( R  e.  Grp  ->  (  _I  |`  ( Base `  R
) )  e.  ( R  GrpHom  R ) )
3 cnvresid 5490 . . . 4  |-  `' (  _I  |`  ( Base `  R ) )  =  (  _I  |`  ( Base `  R ) )
43, 2syl5eqel 2496 . . 3  |-  ( R  e.  Grp  ->  `' (  _I  |`  ( Base `  R ) )  e.  ( R  GrpHom  R ) )
5 isgim2 15015 . . 3  |-  ( (  _I  |`  ( Base `  R ) )  e.  ( R GrpIso  R )  <-> 
( (  _I  |`  ( Base `  R ) )  e.  ( R  GrpHom  R )  /\  `' (  _I  |`  ( Base `  R ) )  e.  ( R  GrpHom  R ) ) )
62, 4, 5sylanbrc 646 . 2  |-  ( R  e.  Grp  ->  (  _I  |`  ( Base `  R
) )  e.  ( R GrpIso  R ) )
7 brgici 15020 . 2  |-  ( (  _I  |`  ( Base `  R ) )  e.  ( R GrpIso  R )  ->  R  ~=ph𝑔 
R )
86, 7syl 16 1  |-  ( R  e.  Grp  ->  R  ~=ph𝑔  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1721   class class class wbr 4180    _I cid 4461   `'ccnv 4844    |` cres 4847   ` cfv 5421  (class class class)co 6048   Basecbs 13432   Grpcgrp 14648    GrpHom cghm 14966   GrpIso cgim 15007    ~=ph𝑔 cgic 15008
This theorem is referenced by:  gicer  15026
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-suc 4555  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-1o 6691  df-mnd 14653  df-grp 14775  df-ghm 14967  df-gim 15009  df-gic 15010
  Copyright terms: Public domain W3C validator