MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gidval Unicode version

Theorem gidval 21754
Description: The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
gidval.1  |-  X  =  ran  G
Assertion
Ref Expression
gidval  |-  ( G  e.  V  ->  (GId `  G )  =  (
iota_ u  e.  X A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) ) )
Distinct variable groups:    x, u, G    u, X, x
Allowed substitution hints:    V( x, u)

Proof of Theorem gidval
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 elex 2924 . 2  |-  ( G  e.  V  ->  G  e.  _V )
2 rneq 5054 . . . . 5  |-  ( g  =  G  ->  ran  g  =  ran  G )
3 gidval.1 . . . . 5  |-  X  =  ran  G
42, 3syl6eqr 2454 . . . 4  |-  ( g  =  G  ->  ran  g  =  X )
5 oveq 6046 . . . . . . 7  |-  ( g  =  G  ->  (
u g x )  =  ( u G x ) )
65eqeq1d 2412 . . . . . 6  |-  ( g  =  G  ->  (
( u g x )  =  x  <->  ( u G x )  =  x ) )
7 oveq 6046 . . . . . . 7  |-  ( g  =  G  ->  (
x g u )  =  ( x G u ) )
87eqeq1d 2412 . . . . . 6  |-  ( g  =  G  ->  (
( x g u )  =  x  <->  ( x G u )  =  x ) )
96, 8anbi12d 692 . . . . 5  |-  ( g  =  G  ->  (
( ( u g x )  =  x  /\  ( x g u )  =  x )  <->  ( ( u G x )  =  x  /\  ( x G u )  =  x ) ) )
104, 9raleqbidv 2876 . . . 4  |-  ( g  =  G  ->  ( A. x  e.  ran  g ( ( u g x )  =  x  /\  ( x g u )  =  x )  <->  A. x  e.  X  ( (
u G x )  =  x  /\  (
x G u )  =  x ) ) )
114, 10riotaeqbidv 6511 . . 3  |-  ( g  =  G  ->  ( iota_ u  e.  ran  g A. x  e.  ran  g ( ( u g x )  =  x  /\  ( x g u )  =  x ) )  =  ( iota_ u  e.  X A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) ) )
12 df-gid 21733 . . 3  |- GId  =  ( g  e.  _V  |->  (
iota_ u  e.  ran  g A. x  e.  ran  g ( ( u g x )  =  x  /\  ( x g u )  =  x ) ) )
13 riotaex 6512 . . 3  |-  ( iota_ u  e.  X A. x  e.  X  ( (
u G x )  =  x  /\  (
x G u )  =  x ) )  e.  _V
1411, 12, 13fvmpt 5765 . 2  |-  ( G  e.  _V  ->  (GId `  G )  =  (
iota_ u  e.  X A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) ) )
151, 14syl 16 1  |-  ( G  e.  V  ->  (GId `  G )  =  (
iota_ u  e.  X A. x  e.  X  ( ( u G x )  =  x  /\  ( x G u )  =  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916   ran crn 4838   ` cfv 5413  (class class class)co 6040   iota_crio 6501  GIdcgi 21728
This theorem is referenced by:  grpoidval  21757  idrval  21868  exidresid  26444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-riota 6508  df-gid 21733
  Copyright terms: Public domain W3C validator