MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gimfn Unicode version

Theorem gimfn 14725
Description: The group isomorphism function is a well-defined function. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
gimfn  |- GrpIso  Fn  ( Grp  X.  Grp )

Proof of Theorem gimfn
Dummy variables  g 
s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-gim 14723 . 2  |- GrpIso  =  ( s  e.  Grp , 
t  e.  Grp  |->  { g  e.  ( s 
GrpHom  t )  |  g : ( Base `  s
)
-1-1-onto-> ( Base `  t ) } )
2 ovex 5883 . . 3  |-  ( s 
GrpHom  t )  e.  _V
32rabex 4165 . 2  |-  { g  e.  ( s  GrpHom  t )  |  g : ( Base `  s
)
-1-1-onto-> ( Base `  t ) }  e.  _V
41, 3fnmpt2i 6193 1  |- GrpIso  Fn  ( Grp  X.  Grp )
Colors of variables: wff set class
Syntax hints:   {crab 2547    X. cxp 4687    Fn wfn 5250   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   Basecbs 13148   Grpcgrp 14362    GrpHom cghm 14680   GrpIso cgim 14721
This theorem is referenced by:  brgic  14733  gicer  14740
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-gim 14723
  Copyright terms: Public domain W3C validator