MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gimfn Unicode version

Theorem gimfn 14975
Description: The group isomorphism function is a well-defined function. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
gimfn  |- GrpIso  Fn  ( Grp  X.  Grp )

Proof of Theorem gimfn
Dummy variables  g 
s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-gim 14973 . 2  |- GrpIso  =  ( s  e.  Grp , 
t  e.  Grp  |->  { g  e.  ( s 
GrpHom  t )  |  g : ( Base `  s
)
-1-1-onto-> ( Base `  t ) } )
2 ovex 6045 . . 3  |-  ( s 
GrpHom  t )  e.  _V
32rabex 4295 . 2  |-  { g  e.  ( s  GrpHom  t )  |  g : ( Base `  s
)
-1-1-onto-> ( Base `  t ) }  e.  _V
41, 3fnmpt2i 6359 1  |- GrpIso  Fn  ( Grp  X.  Grp )
Colors of variables: wff set class
Syntax hints:   {crab 2653    X. cxp 4816    Fn wfn 5389   -1-1-onto->wf1o 5393   ` cfv 5394  (class class class)co 6020   Basecbs 13396   Grpcgrp 14612    GrpHom cghm 14930   GrpIso cgim 14971
This theorem is referenced by:  brgic  14983  gicer  14990
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-gim 14973
  Copyright terms: Public domain W3C validator