Mathbox for Frédéric Liné < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gltpntl2 Unicode version

Theorem gltpntl2 26073
 Description: Given a line, there exists a point not on this line. (For my private use only. Don't use.) (Contributed by FL, 16-Sep-2016.)
Hypotheses
Ref Expression
isig.1 PPoints
isig.2 PLines
gltpntl2.1 Ig
gltpntl2.2
Assertion
Ref Expression
gltpntl2
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem gltpntl2
StepHypRef Expression
1 isig.1 . . 3 PPoints
2 isig.2 . . 3 PLines
3 gltpntl2.1 . . 3 Ig
4 gltpntl2.2 . . 3
51, 2, 3, 4gltpntl 26072 . 2
6 df-rex 2549 . . 3
7 df-nel 2449 . . . . 5
8 eldif 3162 . . . . . 6
98biimpri 197 . . . . 5
107, 9sylan2b 461 . . . 4
1110eximi 1563 . . 3
126, 11sylbi 187 . 2
135, 12syl 15 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 358  wex 1528   wceq 1623   wcel 1684   wnel 2447  wrex 2544   cdif 3149  cfv 5255  PPointscpoints 26056  PLinescplines 26058  Igcig 26060 This theorem is referenced by:  hpd  26169  bhp3  26177 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ig2 26061
 Copyright terms: Public domain W3C validator