MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpaddsubass Structured version   Unicode version

Theorem grpaddsubass 14880
Description: Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
grpsubadd.b  |-  B  =  ( Base `  G
)
grpsubadd.p  |-  .+  =  ( +g  `  G )
grpsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpaddsubass  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  .-  Z )  =  ( X  .+  ( Y  .-  Z ) ) )

Proof of Theorem grpaddsubass
StepHypRef Expression
1 simpl 445 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  G  e.  Grp )
2 simpr1 964 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
3 simpr2 965 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
4 grpsubadd.b . . . . 5  |-  B  =  ( Base `  G
)
5 eqid 2438 . . . . 5  |-  ( inv g `  G )  =  ( inv g `  G )
64, 5grpinvcl 14852 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( inv g `  G ) `  Z
)  e.  B )
763ad2antr3 1125 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( inv g `  G ) `  Z
)  e.  B )
8 grpsubadd.p . . . 4  |-  .+  =  ( +g  `  G )
94, 8grpass 14821 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  ( ( inv g `  G ) `  Z
)  e.  B ) )  ->  ( ( X  .+  Y )  .+  ( ( inv g `  G ) `  Z
) )  =  ( X  .+  ( Y 
.+  ( ( inv g `  G ) `
 Z ) ) ) )
101, 2, 3, 7, 9syl13anc 1187 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  .+  ( ( inv g `  G ) `
 Z ) )  =  ( X  .+  ( Y  .+  ( ( inv g `  G
) `  Z )
) ) )
114, 8grpcl 14820 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
12113adant3r3 1165 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .+  Y )  e.  B )
13 simpr3 966 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
14 grpsubadd.m . . . 4  |-  .-  =  ( -g `  G )
154, 8, 5, 14grpsubval 14850 . . 3  |-  ( ( ( X  .+  Y
)  e.  B  /\  Z  e.  B )  ->  ( ( X  .+  Y )  .-  Z
)  =  ( ( X  .+  Y ) 
.+  ( ( inv g `  G ) `
 Z ) ) )
1612, 13, 15syl2anc 644 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  .-  Z )  =  ( ( X 
.+  Y )  .+  ( ( inv g `  G ) `  Z
) ) )
174, 8, 5, 14grpsubval 14850 . . . 4  |-  ( ( Y  e.  B  /\  Z  e.  B )  ->  ( Y  .-  Z
)  =  ( Y 
.+  ( ( inv g `  G ) `
 Z ) ) )
183, 13, 17syl2anc 644 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Y  .-  Z )  =  ( Y  .+  (
( inv g `  G ) `  Z
) ) )
1918oveq2d 6099 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .+  ( Y  .-  Z ) )  =  ( X  .+  ( Y  .+  ( ( inv g `  G ) `
 Z ) ) ) )
2010, 16, 193eqtr4d 2480 1  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  .-  Z )  =  ( X  .+  ( Y  .-  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   ` cfv 5456  (class class class)co 6083   Basecbs 13471   +g cplusg 13531   Grpcgrp 14687   inv gcminusg 14688   -gcsg 14690
This theorem is referenced by:  grppncan  14881  grpnpncan  14885  nsgconj  14975  conjghm  15038  conjnmz  15041  conjnmzb  15042  sylow3lem1  15263  sylow3lem2  15264  abladdsub  15441  ablsubsub  15444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-0g 13729  df-mnd 14692  df-grp 14814  df-minusg 14815  df-sbg 14816
  Copyright terms: Public domain W3C validator