MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpass Unicode version

Theorem grpass 14496
Description: A group operation is associative. (Contributed by NM, 14-Aug-2011.)
Hypotheses
Ref Expression
grpcl.b  |-  B  =  ( Base `  G
)
grpcl.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
grpass  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )

Proof of Theorem grpass
StepHypRef Expression
1 grpmnd 14494 . 2  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 grpcl.b . . 3  |-  B  =  ( Base `  G
)
3 grpcl.p . . 3  |-  .+  =  ( +g  `  G )
42, 3mndass 14373 . 2  |-  ( ( G  e.  Mnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
51, 4sylan 457 1  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Y
)  .+  Z )  =  ( X  .+  ( Y  .+  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   Mndcmnd 14361   Grpcgrp 14362
This theorem is referenced by:  grprcan  14515  grprinv  14529  grpinvid1  14530  grpinvid2  14531  grplcan  14534  grplmulf1o  14542  grpinvadd  14544  grpsubadd  14553  grpaddsubass  14555  grpsubsub4  14558  grplactcnv  14564  mulgdirlem  14591  imasgrp  14611  issubg2  14636  isnsg3  14651  nmzsubg  14658  ssnmz  14659  eqger  14667  eqgcpbl  14671  divsgrp  14672  conjghm  14713  conjnmz  14716  subgga  14754  cntzsubg  14812  sylow1lem2  14910  sylow2blem1  14931  sylow2blem2  14932  sylow2blem3  14933  sylow3lem1  14938  sylow3lem2  14939  lsmass  14979  lsmmod  14984  lsmdisj2  14991  gex2abl  15143  rngcom  15369  lmodass  15642  psrgrp  16143  ghmcnp  17797  divstgpopn  17802  lfladdass  29263  dvhvaddass  31287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149  ax-pow 4188
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861  df-mnd 14367  df-grp 14489
  Copyright terms: Public domain W3C validator