MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidd Unicode version

Theorem grpidd 14411
Description: Deduce the identity element of a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpidd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
grpidd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
grpidd.z  |-  ( ph  ->  .0.  e.  B )
grpidd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
grpidd.j  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
Assertion
Ref Expression
grpidd  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Distinct variable groups:    x, G    ph, x    x,  .0.
Allowed substitution hints:    B( x)    .+ ( x)

Proof of Theorem grpidd
StepHypRef Expression
1 eqid 2296 . 2  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2296 . 2  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2296 . 2  |-  ( +g  `  G )  =  ( +g  `  G )
4 grpidd.z . . 3  |-  ( ph  ->  .0.  e.  B )
5 grpidd.b . . 3  |-  ( ph  ->  B  =  ( Base `  G ) )
64, 5eleqtrd 2372 . 2  |-  ( ph  ->  .0.  e.  ( Base `  G ) )
75eleq2d 2363 . . . 4  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  G
) ) )
87biimpar 471 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  x  e.  B )
9 grpidd.p . . . . . 6  |-  ( ph  ->  .+  =  ( +g  `  G ) )
109adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  .+  =  ( +g  `  G ) )
1110oveqd 5891 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  (  .0.  ( +g  `  G ) x ) )
12 grpidd.i . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
1311, 12eqtr3d 2330 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  ( +g  `  G
) x )  =  x )
148, 13syldan 456 . 2  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  (  .0.  ( +g  `  G ) x )  =  x )
1510oveqd 5891 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  ( x ( +g  `  G )  .0.  ) )
16 grpidd.j . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
1715, 16eqtr3d 2330 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x ( +g  `  G
)  .0.  )  =  x )
188, 17syldan 456 . 2  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  ( x
( +g  `  G )  .0.  )  =  x )
191, 2, 3, 6, 14, 18ismgmid2 14406 1  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   0gc0g 13416
This theorem is referenced by:  imasmnd2  14425  isgrpde  14522  xrs0  23320
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-riota 6320  df-0g 13420
  Copyright terms: Public domain W3C validator