MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvid1 Unicode version

Theorem grpinvid1 14546
Description: The inverse of a group element expressed in terms of the identity element. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinv.b  |-  B  =  ( Base `  G
)
grpinv.p  |-  .+  =  ( +g  `  G )
grpinv.u  |-  .0.  =  ( 0g `  G )
grpinv.n  |-  N  =  ( inv g `  G )
Assertion
Ref Expression
grpinvid1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <-> 
( X  .+  Y
)  =  .0.  )
)

Proof of Theorem grpinvid1
StepHypRef Expression
1 oveq2 5882 . . . 4  |-  ( ( N `  X )  =  Y  ->  ( X  .+  ( N `  X ) )  =  ( X  .+  Y
) )
21adantl 452 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( X  .+  ( N `  X ) )  =  ( X 
.+  Y ) )
3 grpinv.b . . . . . 6  |-  B  =  ( Base `  G
)
4 grpinv.p . . . . . 6  |-  .+  =  ( +g  `  G )
5 grpinv.u . . . . . 6  |-  .0.  =  ( 0g `  G )
6 grpinv.n . . . . . 6  |-  N  =  ( inv g `  G )
73, 4, 5, 6grprinv 14545 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( N `  X )
)  =  .0.  )
873adant3 975 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( N `  X )
)  =  .0.  )
98adantr 451 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( X  .+  ( N `  X ) )  =  .0.  )
102, 9eqtr3d 2330 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( N `  X
)  =  Y )  ->  ( X  .+  Y )  =  .0.  )
11 oveq2 5882 . . . 4  |-  ( ( X  .+  Y )  =  .0.  ->  (
( N `  X
)  .+  ( X  .+  Y ) )  =  ( ( N `  X )  .+  .0.  ) )
1211adantl 452 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .+  Y
)  =  .0.  )  ->  ( ( N `  X )  .+  ( X  .+  Y ) )  =  ( ( N `
 X )  .+  .0.  ) )
133, 4, 5, 6grplinv 14544 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  X
)  =  .0.  )
1413oveq1d 5889 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( ( N `
 X )  .+  X )  .+  Y
)  =  (  .0.  .+  Y ) )
15143adant3 975 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( N `
 X )  .+  X )  .+  Y
)  =  (  .0.  .+  Y ) )
163, 6grpinvcl 14543 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
1716adantrr 697 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  ( N `  X )  e.  B )
18 simprl 732 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
19 simprr 733 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  Y  e.  B )
2017, 18, 193jca 1132 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( N `  X
)  e.  B  /\  X  e.  B  /\  Y  e.  B )
)
213, 4grpass 14512 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( ( N `  X )  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( N `  X )  .+  X
)  .+  Y )  =  ( ( N `
 X )  .+  ( X  .+  Y ) ) )
2220, 21syldan 456 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( ( N `  X )  .+  X
)  .+  Y )  =  ( ( N `
 X )  .+  ( X  .+  Y ) ) )
23223impb 1147 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( N `
 X )  .+  X )  .+  Y
)  =  ( ( N `  X ) 
.+  ( X  .+  Y ) ) )
2415, 23eqtr3d 2330 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  (  .0.  .+  Y
)  =  ( ( N `  X ) 
.+  ( X  .+  Y ) ) )
253, 4, 5grplid 14528 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  (  .0.  .+  Y
)  =  Y )
26253adant2 974 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  (  .0.  .+  Y
)  =  Y )
2724, 26eqtr3d 2330 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  .+  ( X  .+  Y ) )  =  Y )
2827adantr 451 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .+  Y
)  =  .0.  )  ->  ( ( N `  X )  .+  ( X  .+  Y ) )  =  Y )
293, 4, 5grprid 14529 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N `  X )  e.  B )  -> 
( ( N `  X )  .+  .0.  )  =  ( N `  X ) )
3016, 29syldan 456 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  .+  .0.  )  =  ( N `  X ) )
31303adant3 975 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  .+  .0.  )  =  ( N `  X ) )
3231adantr 451 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .+  Y
)  =  .0.  )  ->  ( ( N `  X )  .+  .0.  )  =  ( N `  X ) )
3312, 28, 323eqtr3rd 2337 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .+  Y
)  =  .0.  )  ->  ( N `  X
)  =  Y )
3410, 33impbida 805 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  X )  =  Y  <-> 
( X  .+  Y
)  =  .0.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   0gc0g 13416   Grpcgrp 14378   inv gcminusg 14379
This theorem is referenced by:  grpinvid  14549  grpinvcnv  14552  grpinvadd  14560  subginv  14644  divsinv  14692  ghminv  14706  symginv  14798  frgpinv  15089  rngnegl  15396  lmodindp1  15787  lmodvsinv2  15810  cnfldneg  16416  dchrinv  20516  baerlem3lem1  32519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-riota 6320  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506
  Copyright terms: Public domain W3C validator