MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplactf1o Unicode version

Theorem grplactf1o 14851
Description: The left group action of element  A of group  G maps the underlying set  X of  G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grplact.1  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
grplact.2  |-  X  =  ( Base `  G
)
grplact.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
grplactf1o  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F `  A
) : X -1-1-onto-> X )
Distinct variable groups:    g, a, A    G, a, g    .+ , a,
g    X, a, g
Allowed substitution hints:    F( g, a)

Proof of Theorem grplactf1o
StepHypRef Expression
1 grplact.1 . . 3  |-  F  =  ( g  e.  X  |->  ( a  e.  X  |->  ( g  .+  a
) ) )
2 grplact.2 . . 3  |-  X  =  ( Base `  G
)
3 grplact.3 . . 3  |-  .+  =  ( +g  `  G )
4 eqid 2412 . . 3  |-  ( inv g `  G )  =  ( inv g `  G )
51, 2, 3, 4grplactcnv 14850 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( F `  A ) : X -1-1-onto-> X  /\  `' ( F `  A )  =  ( F `  ( ( inv g `  G
) `  A )
) ) )
65simpld 446 1  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( F `  A
) : X -1-1-onto-> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    e. cmpt 4234   `'ccnv 4844   -1-1-onto->wf1o 5420   ` cfv 5421  (class class class)co 6048   Basecbs 13432   +g cplusg 13492   Grpcgrp 14648   inv gcminusg 14649
This theorem is referenced by:  eqgen  14956  dchrsum2  21013  sumdchr2  21015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-riota 6516  df-0g 13690  df-mnd 14653  df-grp 14775  df-minusg 14776
  Copyright terms: Public domain W3C validator