MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpo2inv Unicode version

Theorem grpo2inv 21784
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1  |-  X  =  ran  G
grpasscan1.2  |-  N  =  ( inv `  G
)
Assertion
Ref Expression
grpo2inv  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  ( N `  A ) )  =  A )

Proof of Theorem grpo2inv
StepHypRef Expression
1 grpasscan1.1 . . . . 5  |-  X  =  ran  G
2 grpasscan1.2 . . . . 5  |-  N  =  ( inv `  G
)
31, 2grpoinvcl 21771 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  A )  e.  X )
4 eqid 2408 . . . . 5  |-  (GId `  G )  =  (GId
`  G )
51, 4, 2grporinv 21774 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( N `  A )  e.  X )  ->  (
( N `  A
) G ( N `
 ( N `  A ) ) )  =  (GId `  G
) )
63, 5syldan 457 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( N `  A
) G ( N `
 ( N `  A ) ) )  =  (GId `  G
) )
71, 4, 2grpolinv 21773 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( N `  A
) G A )  =  (GId `  G
) )
86, 7eqtr4d 2443 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( N `  A
) G ( N `
 ( N `  A ) ) )  =  ( ( N `
 A ) G A ) )
91, 2grpoinvcl 21771 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( N `  A )  e.  X )  ->  ( N `  ( N `  A ) )  e.  X )
103, 9syldan 457 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  ( N `  A ) )  e.  X )
11 simpr 448 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  A  e.  X )
1210, 11, 33jca 1134 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( N `  ( N `  A )
)  e.  X  /\  A  e.  X  /\  ( N `  A )  e.  X ) )
131grpolcan 21778 . . 3  |-  ( ( G  e.  GrpOp  /\  (
( N `  ( N `  A )
)  e.  X  /\  A  e.  X  /\  ( N `  A )  e.  X ) )  ->  ( ( ( N `  A ) G ( N `  ( N `  A ) ) )  =  ( ( N `  A
) G A )  <-> 
( N `  ( N `  A )
)  =  A ) )
1412, 13syldan 457 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( N `  A ) G ( N `  ( N `
 A ) ) )  =  ( ( N `  A ) G A )  <->  ( N `  ( N `  A
) )  =  A ) )
158, 14mpbid 202 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  ( N `  A ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   ran crn 4842   ` cfv 5417  (class class class)co 6044   GrpOpcgr 21731  GIdcgi 21732   invcgn 21733
This theorem is referenced by:  grpoinvf  21785  grpodivinv  21789  grpoinvdiv  21790  gxneg  21811  gxneg2  21812  gxinv2  21816  gxsuc  21817  gxmul  21823  nvnegneg  22089  ghomf1olem  25062
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-riota 6512  df-grpo 21736  df-gid 21737  df-ginv 21738
  Copyright terms: Public domain W3C validator