MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpo2inv Unicode version

Theorem grpo2inv 21018
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1  |-  X  =  ran  G
grpasscan1.2  |-  N  =  ( inv `  G
)
Assertion
Ref Expression
grpo2inv  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  ( N `  A ) )  =  A )

Proof of Theorem grpo2inv
StepHypRef Expression
1 grpasscan1.1 . . . . 5  |-  X  =  ran  G
2 grpasscan1.2 . . . . 5  |-  N  =  ( inv `  G
)
31, 2grpoinvcl 21005 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  A )  e.  X )
4 eqid 2358 . . . . 5  |-  (GId `  G )  =  (GId
`  G )
51, 4, 2grporinv 21008 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( N `  A )  e.  X )  ->  (
( N `  A
) G ( N `
 ( N `  A ) ) )  =  (GId `  G
) )
63, 5syldan 456 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( N `  A
) G ( N `
 ( N `  A ) ) )  =  (GId `  G
) )
71, 4, 2grpolinv 21007 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( N `  A
) G A )  =  (GId `  G
) )
86, 7eqtr4d 2393 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( N `  A
) G ( N `
 ( N `  A ) ) )  =  ( ( N `
 A ) G A ) )
91, 2grpoinvcl 21005 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( N `  A )  e.  X )  ->  ( N `  ( N `  A ) )  e.  X )
103, 9syldan 456 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  ( N `  A ) )  e.  X )
11 simpr 447 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  A  e.  X )
1210, 11, 33jca 1132 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( N `  ( N `  A )
)  e.  X  /\  A  e.  X  /\  ( N `  A )  e.  X ) )
131grpolcan 21012 . . 3  |-  ( ( G  e.  GrpOp  /\  (
( N `  ( N `  A )
)  e.  X  /\  A  e.  X  /\  ( N `  A )  e.  X ) )  ->  ( ( ( N `  A ) G ( N `  ( N `  A ) ) )  =  ( ( N `  A
) G A )  <-> 
( N `  ( N `  A )
)  =  A ) )
1412, 13syldan 456 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( N `  A ) G ( N `  ( N `
 A ) ) )  =  ( ( N `  A ) G A )  <->  ( N `  ( N `  A
) )  =  A ) )
158, 14mpbid 201 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( N `  ( N `  A ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   ran crn 4772   ` cfv 5337  (class class class)co 5945   GrpOpcgr 20965  GIdcgi 20966   invcgn 20967
This theorem is referenced by:  grpoinvf  21019  grpodivinv  21023  grpoinvdiv  21024  gxneg  21045  gxneg2  21046  gxinv2  21050  gxsuc  21051  gxmul  21057  nvnegneg  21323  ghomf1olem  24405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-riota 6391  df-grpo 20970  df-gid 20971  df-ginv 20972
  Copyright terms: Public domain W3C validator