MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivdiv Unicode version

Theorem grpodivdiv 21684
Description: Double group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1  |-  X  =  ran  G
grpdivf.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
grpodivdiv  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D C ) )  =  ( A G ( C D B ) ) )

Proof of Theorem grpodivdiv
StepHypRef Expression
1 simpl 444 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  G  e.  GrpOp
)
2 simpr1 963 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
3 grpdivf.1 . . . . 5  |-  X  =  ran  G
4 grpdivf.3 . . . . 5  |-  D  =  (  /g  `  G
)
53, 4grpodivcl 21683 . . . 4  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B D C )  e.  X )
653adant3r1 1162 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D C )  e.  X
)
7 eqid 2387 . . . 4  |-  ( inv `  G )  =  ( inv `  G )
83, 7, 4grpodivval 21679 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( B D C )  e.  X )  ->  ( A D ( B D C ) )  =  ( A G ( ( inv `  G
) `  ( B D C ) ) ) )
91, 2, 6, 8syl3anc 1184 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D C ) )  =  ( A G ( ( inv `  G
) `  ( B D C ) ) ) )
103, 7, 4grpoinvdiv 21681 . . . 4  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  (
( inv `  G
) `  ( B D C ) )  =  ( C D B ) )
11103adant3r1 1162 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( inv `  G ) `  ( B D C ) )  =  ( C D B ) )
1211oveq2d 6036 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A G ( ( inv `  G ) `  ( B D C ) ) )  =  ( A G ( C D B ) ) )
139, 12eqtrd 2419 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D C ) )  =  ( A G ( C D B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   ran crn 4819   ` cfv 5394  (class class class)co 6020   GrpOpcgr 21622   invcgn 21624    /g cgs 21625
This theorem is referenced by:  ablodivdiv  21726
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-grpo 21627  df-gid 21628  df-ginv 21629  df-gdiv 21630
  Copyright terms: Public domain W3C validator