MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodiveq Unicode version

Theorem grpodiveq 21694
Description: Relationship between group division and group multiplication. (Contributed by Mario Carneiro, 11-Jul-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1  |-  X  =  ran  G
grpdivf.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
grpodiveq  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B )  =  C  <->  ( C G B )  =  A ) )

Proof of Theorem grpodiveq
StepHypRef Expression
1 eqcom 2391 . 2  |-  ( ( A D B )  =  C  <->  C  =  ( A D B ) )
2 simpl 444 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  G  e.  GrpOp
)
3 simpr3 965 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
4 grpdivf.1 . . . . . 6  |-  X  =  ran  G
5 grpdivf.3 . . . . . 6  |-  D  =  (  /g  `  G
)
64, 5grpodivcl 21685 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  X )
763adant3r3 1164 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  e.  X
)
8 simpr2 964 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
94grporcan 21659 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( C  e.  X  /\  ( A D B )  e.  X  /\  B  e.  X ) )  -> 
( ( C G B )  =  ( ( A D B ) G B )  <-> 
C  =  ( A D B ) ) )
102, 3, 7, 8, 9syl13anc 1186 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( C G B )  =  ( ( A D B ) G B )  <->  C  =  ( A D B ) ) )
114, 5grponpcan 21690 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A D B ) G B )  =  A )
12113adant3r3 1164 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) G B )  =  A )
1312eqeq2d 2400 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( C G B )  =  ( ( A D B ) G B )  <->  ( C G B )  =  A ) )
1410, 13bitr3d 247 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( C  =  ( A D B )  <->  ( C G B )  =  A ) )
151, 14syl5bb 249 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B )  =  C  <->  ( C G B )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   ran crn 4821   ` cfv 5396  (class class class)co 6022   GrpOpcgr 21624    /g cgs 21627
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-grpo 21629  df-gid 21630  df-ginv 21631  df-gdiv 21632
  Copyright terms: Public domain W3C validator