MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivinv Structured version   Unicode version

Theorem grpodivinv 21832
Description: Group division by an inverse. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1  |-  X  =  ran  G
grpdiv.2  |-  N  =  ( inv `  G
)
grpdiv.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
grpodivinv  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D ( N `  B ) )  =  ( A G B ) )

Proof of Theorem grpodivinv
StepHypRef Expression
1 grpdiv.1 . . . . 5  |-  X  =  ran  G
2 grpdiv.2 . . . . 5  |-  N  =  ( inv `  G
)
31, 2grpoinvcl 21814 . . . 4  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( N `  B )  e.  X )
433adant2 976 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  B )  e.  X )
5 grpdiv.3 . . . 4  |-  D  =  (  /g  `  G
)
61, 2, 5grpodivval 21831 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  ( N `  B )  e.  X )  ->  ( A D ( N `  B ) )  =  ( A G ( N `  ( N `
 B ) ) ) )
74, 6syld3an3 1229 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D ( N `  B ) )  =  ( A G ( N `  ( N `
 B ) ) ) )
81, 2grpo2inv 21827 . . . 4  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( N `  ( N `  B ) )  =  B )
983adant2 976 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( N `  B ) )  =  B )
109oveq2d 6097 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G ( N `  ( N `  B ) ) )  =  ( A G B ) )
117, 10eqtrd 2468 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D ( N `  B ) )  =  ( A G B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725   ran crn 4879   ` cfv 5454  (class class class)co 6081   GrpOpcgr 21774   invcgn 21776    /g cgs 21777
This theorem is referenced by:  ablodivdiv4  21879
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-grpo 21779  df-gid 21780  df-ginv 21781  df-gdiv 21782
  Copyright terms: Public domain W3C validator