MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivval Unicode version

Theorem grpodivval 21792
Description: Group division (or subtraction) operation value. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1  |-  X  =  ran  G
grpdiv.2  |-  N  =  ( inv `  G
)
grpdiv.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
grpodivval  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( A G ( N `  B ) ) )

Proof of Theorem grpodivval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpdiv.1 . . . . 5  |-  X  =  ran  G
2 grpdiv.2 . . . . 5  |-  N  =  ( inv `  G
)
3 grpdiv.3 . . . . 5  |-  D  =  (  /g  `  G
)
41, 2, 3grpodivfval 21791 . . . 4  |-  ( G  e.  GrpOp  ->  D  =  ( x  e.  X ,  y  e.  X  |->  ( x G ( N `  y ) ) ) )
54oveqd 6065 . . 3  |-  ( G  e.  GrpOp  ->  ( A D B )  =  ( A ( x  e.  X ,  y  e.  X  |->  ( x G ( N `  y
) ) ) B ) )
6 oveq1 6055 . . . 4  |-  ( x  =  A  ->  (
x G ( N `
 y ) )  =  ( A G ( N `  y
) ) )
7 fveq2 5695 . . . . 5  |-  ( y  =  B  ->  ( N `  y )  =  ( N `  B ) )
87oveq2d 6064 . . . 4  |-  ( y  =  B  ->  ( A G ( N `  y ) )  =  ( A G ( N `  B ) ) )
9 eqid 2412 . . . 4  |-  ( x  e.  X ,  y  e.  X  |->  ( x G ( N `  y ) ) )  =  ( x  e.  X ,  y  e.  X  |->  ( x G ( N `  y
) ) )
10 ovex 6073 . . . 4  |-  ( A G ( N `  B ) )  e. 
_V
116, 8, 9, 10ovmpt2 6176 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A ( x  e.  X ,  y  e.  X  |->  ( x G ( N `  y ) ) ) B )  =  ( A G ( N `
 B ) ) )
125, 11sylan9eq 2464 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  =  ( A G ( N `
 B ) ) )
13123impb 1149 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( A G ( N `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   ran crn 4846   ` cfv 5421  (class class class)co 6048    e. cmpt2 6050   GrpOpcgr 21735   invcgn 21737    /g cgs 21738
This theorem is referenced by:  grpodivinv  21793  grpoinvdiv  21794  grpodivdiv  21797  grpomuldivass  21798  grpodivid  21799  grponpcan  21801  grpopnpcan2  21802  grponnncan2  21803  ablodivdiv4  21840  nvmval  22084  rngosub  26462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-gdiv 21743
  Copyright terms: Public domain W3C validator