MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoideu Unicode version

Theorem grpoideu 20892
Description: The left identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1  |-  X  =  ran  G
Assertion
Ref Expression
grpoideu  |-  ( G  e.  GrpOp  ->  E! u  e.  X  A. x  e.  X  ( u G x )  =  x )
Distinct variable groups:    x, u, G    u, X, x

Proof of Theorem grpoideu
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpfo.1 . . . 4  |-  X  =  ran  G
21grpoidinv 20891 . . 3  |-  ( G  e.  GrpOp  ->  E. u  e.  X  A. z  e.  X  ( (
( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u ) ) )
3 simpll 730 . . . . . . . . 9  |-  ( ( ( ( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( (
y G z )  =  u  /\  (
z G y )  =  u ) )  ->  ( u G z )  =  z )
43ralimi 2631 . . . . . . . 8  |-  ( A. z  e.  X  (
( ( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( (
y G z )  =  u  /\  (
z G y )  =  u ) )  ->  A. z  e.  X  ( u G z )  =  z )
5 oveq2 5882 . . . . . . . . . 10  |-  ( z  =  x  ->  (
u G z )  =  ( u G x ) )
6 id 19 . . . . . . . . . 10  |-  ( z  =  x  ->  z  =  x )
75, 6eqeq12d 2310 . . . . . . . . 9  |-  ( z  =  x  ->  (
( u G z )  =  z  <->  ( u G x )  =  x ) )
87cbvralv 2777 . . . . . . . 8  |-  ( A. z  e.  X  (
u G z )  =  z  <->  A. x  e.  X  ( u G x )  =  x )
94, 8sylib 188 . . . . . . 7  |-  ( A. z  e.  X  (
( ( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( (
y G z )  =  u  /\  (
z G y )  =  u ) )  ->  A. x  e.  X  ( u G x )  =  x )
109adantl 452 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  u  e.  X )  /\  A. z  e.  X  ( ( ( u G z )  =  z  /\  (
z G u )  =  z )  /\  E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u ) ) )  ->  A. x  e.  X  ( u G x )  =  x )
119ad2antlr 707 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  u  e.  X
)  /\  A. z  e.  X  ( (
( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u ) ) )  /\  w  e.  X
)  ->  A. x  e.  X  ( u G x )  =  x )
12 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( (
y G z )  =  u  /\  (
z G y )  =  u ) )  ->  E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u ) )
1312ralimi 2631 . . . . . . . . . . . . . . 15  |-  ( A. z  e.  X  (
( ( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( (
y G z )  =  u  /\  (
z G y )  =  u ) )  ->  A. z  e.  X  E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u ) )
14 oveq2 5882 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  w  ->  (
y G z )  =  ( y G w ) )
1514eqeq1d 2304 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  w  ->  (
( y G z )  =  u  <->  ( y G w )  =  u ) )
16 oveq1 5881 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  w  ->  (
z G y )  =  ( w G y ) )
1716eqeq1d 2304 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  w  ->  (
( z G y )  =  u  <->  ( w G y )  =  u ) )
1815, 17anbi12d 691 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  w  ->  (
( ( y G z )  =  u  /\  ( z G y )  =  u )  <->  ( ( y G w )  =  u  /\  ( w G y )  =  u ) ) )
1918rexbidv 2577 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  ( E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u )  <->  E. y  e.  X  ( ( y G w )  =  u  /\  ( w G y )  =  u ) ) )
2019rspcva 2895 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  X  /\  A. z  e.  X  E. y  e.  X  (
( y G z )  =  u  /\  ( z G y )  =  u ) )  ->  E. y  e.  X  ( (
y G w )  =  u  /\  (
w G y )  =  u ) )
2120adantll 694 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  GrpOp  /\  w  e.  X )  /\  A. z  e.  X  E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u ) )  ->  E. y  e.  X  ( ( y G w )  =  u  /\  ( w G y )  =  u ) )
2213, 21sylan2 460 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  GrpOp  /\  w  e.  X )  /\  A. z  e.  X  ( ( ( u G z )  =  z  /\  (
z G u )  =  z )  /\  E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u ) ) )  ->  E. y  e.  X  ( (
y G w )  =  u  /\  (
w G y )  =  u ) )
231grpoidinvlem4 20890 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  GrpOp  /\  w  e.  X )  /\  E. y  e.  X  ( ( y G w )  =  u  /\  ( w G y )  =  u ) )  -> 
( w G u )  =  ( u G w ) )
2422, 23syldan 456 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  w  e.  X )  /\  A. z  e.  X  ( ( ( u G z )  =  z  /\  (
z G u )  =  z )  /\  E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u ) ) )  ->  (
w G u )  =  ( u G w ) )
2524an32s 779 . . . . . . . . . . . 12  |-  ( ( ( G  e.  GrpOp  /\ 
A. z  e.  X  ( ( ( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  (
( y G z )  =  u  /\  ( z G y )  =  u ) ) )  /\  w  e.  X )  ->  (
w G u )  =  ( u G w ) )
2625adantllr 699 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  u  e.  X
)  /\  A. z  e.  X  ( (
( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u ) ) )  /\  w  e.  X
)  ->  ( w G u )  =  ( u G w ) )
2726adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( G  e.  GrpOp  /\  u  e.  X )  /\  A. z  e.  X  (
( ( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( (
y G z )  =  u  /\  (
z G y )  =  u ) ) )  /\  w  e.  X )  /\  ( A. x  e.  X  ( u G x )  =  x  /\  A. x  e.  X  ( w G x )  =  x ) )  ->  ( w G u )  =  ( u G w ) )
28 oveq2 5882 . . . . . . . . . . . . . . 15  |-  ( x  =  u  ->  (
w G x )  =  ( w G u ) )
29 id 19 . . . . . . . . . . . . . . 15  |-  ( x  =  u  ->  x  =  u )
3028, 29eqeq12d 2310 . . . . . . . . . . . . . 14  |-  ( x  =  u  ->  (
( w G x )  =  x  <->  ( w G u )  =  u ) )
3130rspcva 2895 . . . . . . . . . . . . 13  |-  ( ( u  e.  X  /\  A. x  e.  X  ( w G x )  =  x )  -> 
( w G u )  =  u )
3231adantll 694 . . . . . . . . . . . 12  |-  ( ( ( G  e.  GrpOp  /\  u  e.  X )  /\  A. x  e.  X  ( w G x )  =  x )  ->  ( w G u )  =  u )
3332ad2ant2rl 729 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  u  e.  X
)  /\  w  e.  X )  /\  ( A. x  e.  X  ( u G x )  =  x  /\  A. x  e.  X  ( w G x )  =  x ) )  ->  ( w G u )  =  u )
3433adantllr 699 . . . . . . . . . 10  |-  ( ( ( ( ( G  e.  GrpOp  /\  u  e.  X )  /\  A. z  e.  X  (
( ( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( (
y G z )  =  u  /\  (
z G y )  =  u ) ) )  /\  w  e.  X )  /\  ( A. x  e.  X  ( u G x )  =  x  /\  A. x  e.  X  ( w G x )  =  x ) )  ->  ( w G u )  =  u )
35 oveq2 5882 . . . . . . . . . . . . 13  |-  ( x  =  w  ->  (
u G x )  =  ( u G w ) )
36 id 19 . . . . . . . . . . . . 13  |-  ( x  =  w  ->  x  =  w )
3735, 36eqeq12d 2310 . . . . . . . . . . . 12  |-  ( x  =  w  ->  (
( u G x )  =  x  <->  ( u G w )  =  w ) )
3837rspcva 2895 . . . . . . . . . . 11  |-  ( ( w  e.  X  /\  A. x  e.  X  ( u G x )  =  x )  -> 
( u G w )  =  w )
3938ad2ant2lr 728 . . . . . . . . . 10  |-  ( ( ( ( ( G  e.  GrpOp  /\  u  e.  X )  /\  A. z  e.  X  (
( ( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( (
y G z )  =  u  /\  (
z G y )  =  u ) ) )  /\  w  e.  X )  /\  ( A. x  e.  X  ( u G x )  =  x  /\  A. x  e.  X  ( w G x )  =  x ) )  ->  ( u G w )  =  w )
4027, 34, 393eqtr3d 2336 . . . . . . . . 9  |-  ( ( ( ( ( G  e.  GrpOp  /\  u  e.  X )  /\  A. z  e.  X  (
( ( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( (
y G z )  =  u  /\  (
z G y )  =  u ) ) )  /\  w  e.  X )  /\  ( A. x  e.  X  ( u G x )  =  x  /\  A. x  e.  X  ( w G x )  =  x ) )  ->  u  =  w )
4140ex 423 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  u  e.  X
)  /\  A. z  e.  X  ( (
( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u ) ) )  /\  w  e.  X
)  ->  ( ( A. x  e.  X  ( u G x )  =  x  /\  A. x  e.  X  ( w G x )  =  x )  ->  u  =  w )
)
4211, 41mpand 656 . . . . . . 7  |-  ( ( ( ( G  e. 
GrpOp  /\  u  e.  X
)  /\  A. z  e.  X  ( (
( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u ) ) )  /\  w  e.  X
)  ->  ( A. x  e.  X  (
w G x )  =  x  ->  u  =  w ) )
4342ralrimiva 2639 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  u  e.  X )  /\  A. z  e.  X  ( ( ( u G z )  =  z  /\  (
z G u )  =  z )  /\  E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u ) ) )  ->  A. w  e.  X  ( A. x  e.  X  (
w G x )  =  x  ->  u  =  w ) )
4410, 43jca 518 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  u  e.  X )  /\  A. z  e.  X  ( ( ( u G z )  =  z  /\  (
z G u )  =  z )  /\  E. y  e.  X  ( ( y G z )  =  u  /\  ( z G y )  =  u ) ) )  ->  ( A. x  e.  X  ( u G x )  =  x  /\  A. w  e.  X  ( A. x  e.  X  ( w G x )  =  x  ->  u  =  w )
) )
4544ex 423 . . . 4  |-  ( ( G  e.  GrpOp  /\  u  e.  X )  ->  ( A. z  e.  X  ( ( ( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  (
( y G z )  =  u  /\  ( z G y )  =  u ) )  ->  ( A. x  e.  X  (
u G x )  =  x  /\  A. w  e.  X  ( A. x  e.  X  ( w G x )  =  x  ->  u  =  w )
) ) )
4645reximdva 2668 . . 3  |-  ( G  e.  GrpOp  ->  ( E. u  e.  X  A. z  e.  X  (
( ( u G z )  =  z  /\  ( z G u )  =  z )  /\  E. y  e.  X  ( (
y G z )  =  u  /\  (
z G y )  =  u ) )  ->  E. u  e.  X  ( A. x  e.  X  ( u G x )  =  x  /\  A. w  e.  X  ( A. x  e.  X  ( w G x )  =  x  ->  u  =  w )
) ) )
472, 46mpd 14 . 2  |-  ( G  e.  GrpOp  ->  E. u  e.  X  ( A. x  e.  X  (
u G x )  =  x  /\  A. w  e.  X  ( A. x  e.  X  ( w G x )  =  x  ->  u  =  w )
) )
48 oveq1 5881 . . . . 5  |-  ( u  =  w  ->  (
u G x )  =  ( w G x ) )
4948eqeq1d 2304 . . . 4  |-  ( u  =  w  ->  (
( u G x )  =  x  <->  ( w G x )  =  x ) )
5049ralbidv 2576 . . 3  |-  ( u  =  w  ->  ( A. x  e.  X  ( u G x )  =  x  <->  A. x  e.  X  ( w G x )  =  x ) )
5150reu8 2974 . 2  |-  ( E! u  e.  X  A. x  e.  X  (
u G x )  =  x  <->  E. u  e.  X  ( A. x  e.  X  (
u G x )  =  x  /\  A. w  e.  X  ( A. x  e.  X  ( w G x )  =  x  ->  u  =  w )
) )
5247, 51sylibr 203 1  |-  ( G  e.  GrpOp  ->  E! u  e.  X  A. x  e.  X  ( u G x )  =  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   E!wreu 2558   ran crn 4706  (class class class)co 5874   GrpOpcgr 20869
This theorem is referenced by:  grpoidval  20899  grpoidcl  20900  grpoidinv2  20901  cnid  21034  mulid  21039  hilid  21756
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-ov 5877  df-grpo 20874
  Copyright terms: Public domain W3C validator