Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpokerinj Structured version   Unicode version

Theorem grpokerinj 26551
Description: A group homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
grpkerinj.1  |-  X  =  ran  G
grpkerinj.2  |-  W  =  (GId `  G )
grpkerinj.3  |-  Y  =  ran  H
grpkerinj.4  |-  U  =  (GId `  H )
Assertion
Ref Expression
grpokerinj  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F : X -1-1-> Y  <->  ( `' F " { U } )  =  { W }
) )

Proof of Theorem grpokerinj
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpkerinj.2 . . . . . . . . 9  |-  W  =  (GId `  G )
2 grpkerinj.4 . . . . . . . . 9  |-  U  =  (GId `  H )
31, 2ghomid 21945 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F `  W )  =  U )
43sneqd 3819 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  { ( F `
 W ) }  =  { U }
)
5 grpkerinj.1 . . . . . . . . . 10  |-  X  =  ran  G
6 grpkerinj.3 . . . . . . . . . 10  |-  Y  =  ran  H
75, 6ghomf 26548 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F : X --> Y )
8 ffn 5583 . . . . . . . . 9  |-  ( F : X --> Y  ->  F  Fn  X )
97, 8syl 16 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F  Fn  X
)
105, 1grpoidcl 21797 . . . . . . . . 9  |-  ( G  e.  GrpOp  ->  W  e.  X )
11103ad2ant1 978 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  W  e.  X
)
12 fnsnfv 5778 . . . . . . . 8  |-  ( ( F  Fn  X  /\  W  e.  X )  ->  { ( F `  W ) }  =  ( F " { W } ) )
139, 11, 12syl2anc 643 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  { ( F `
 W ) }  =  ( F " { W } ) )
144, 13eqtr3d 2469 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  { U }  =  ( F " { W } ) )
1514imaeq2d 5195 . . . . 5  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( `' F " { U } )  =  ( `' F " ( F " { W } ) ) )
1615adantl 453 . . . 4  |-  ( ( F : X -1-1-> Y  /\  ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
) )  ->  ( `' F " { U } )  =  ( `' F " ( F
" { W }
) ) )
1710snssd 3935 . . . . . 6  |-  ( G  e.  GrpOp  ->  { W }  C_  X )
18173ad2ant1 978 . . . . 5  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  { W }  C_  X )
19 f1imacnv 5683 . . . . 5  |-  ( ( F : X -1-1-> Y  /\  { W }  C_  X )  ->  ( `' F " ( F
" { W }
) )  =  { W } )
2018, 19sylan2 461 . . . 4  |-  ( ( F : X -1-1-> Y  /\  ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
) )  ->  ( `' F " ( F
" { W }
) )  =  { W } )
2116, 20eqtrd 2467 . . 3  |-  ( ( F : X -1-1-> Y  /\  ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
) )  ->  ( `' F " { U } )  =  { W } )
2221expcom 425 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F : X -1-1-> Y  ->  ( `' F " { U } )  =  { W } ) )
237adantr 452 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( `' F " { U }
)  =  { W } )  ->  F : X --> Y )
24 simpl2 961 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  ->  H  e.  GrpOp )
257ffvelrnda 5862 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  x  e.  X )  ->  ( F `  x )  e.  Y )
2625adantrr 698 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  x
)  e.  Y )
277ffvelrnda 5862 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  y  e.  X )  ->  ( F `  y )  e.  Y )
2827adantrl 697 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  y
)  e.  Y )
29 eqid 2435 . . . . . . . . 9  |-  (  /g  `  H )  =  (  /g  `  H )
306, 2, 29grpoeqdivid 26547 . . . . . . . 8  |-  ( ( H  e.  GrpOp  /\  ( F `  x )  e.  Y  /\  ( F `  y )  e.  Y )  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( ( F `  x )
(  /g  `  H ) ( F `  y
) )  =  U ) )
3124, 26, 28, 30syl3anc 1184 . . . . . . 7  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  x )  =  ( F `  y )  <-> 
( ( F `  x ) (  /g  `  H ) ( F `
 y ) )  =  U ) )
3231adantlr 696 . . . . . 6  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  x )  =  ( F `  y )  <->  ( ( F `  x )
(  /g  `  H ) ( F `  y
) )  =  U ) )
33 eqid 2435 . . . . . . . . . 10  |-  (  /g  `  G )  =  (  /g  `  G )
345, 33, 29ghomdiv 26550 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( F `  (
x (  /g  `  G
) y ) )  =  ( ( F `
 x ) (  /g  `  H ) ( F `  y
) ) )
3534adantlr 696 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( F `  ( x (  /g  `  G ) y ) )  =  ( ( F `  x ) (  /g  `  H
) ( F `  y ) ) )
3635eqeq1d 2443 . . . . . . 7  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  ( x
(  /g  `  G ) y ) )  =  U  <->  ( ( F `
 x ) (  /g  `  H ) ( F `  y
) )  =  U ) )
37 fvex 5734 . . . . . . . . . . 11  |-  (GId `  H )  e.  _V
382, 37eqeltri 2505 . . . . . . . . . 10  |-  U  e. 
_V
3938snid 3833 . . . . . . . . 9  |-  U  e. 
{ U }
40 eleq1 2495 . . . . . . . . 9  |-  ( ( F `  ( x (  /g  `  G
) y ) )  =  U  ->  (
( F `  (
x (  /g  `  G
) y ) )  e.  { U }  <->  U  e.  { U }
) )
4139, 40mpbiri 225 . . . . . . . 8  |-  ( ( F `  ( x (  /g  `  G
) y ) )  =  U  ->  ( F `  ( x
(  /g  `  G ) y ) )  e. 
{ U } )
42 ffun 5585 . . . . . . . . . . . . . 14  |-  ( F : X --> Y  ->  Fun  F )
437, 42syl 16 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  Fun  F )
4443adantr 452 . . . . . . . . . . . 12  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  ->  Fun  F )
455, 33grpodivcl 21827 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  GrpOp  /\  x  e.  X  /\  y  e.  X )  ->  (
x (  /g  `  G
) y )  e.  X )
46453expb 1154 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
(  /g  `  G ) y )  e.  X
)
47463ad2antl1 1119 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x (  /g  `  G ) y )  e.  X )
48 fdm 5587 . . . . . . . . . . . . . . 15  |-  ( F : X --> Y  ->  dom  F  =  X )
497, 48syl 16 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  dom  F  =  X )
5049adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  ->  dom  F  =  X )
5147, 50eleqtrrd 2512 . . . . . . . . . . . 12  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x (  /g  `  G ) y )  e.  dom  F )
52 fvimacnv 5837 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  (
x (  /g  `  G
) y )  e. 
dom  F )  -> 
( ( F `  ( x (  /g  `  G ) y ) )  e.  { U } 
<->  ( x (  /g  `  G ) y )  e.  ( `' F " { U } ) ) )
5344, 51, 52syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( F `  ( x (  /g  `  G ) y ) )  e.  { U } 
<->  ( x (  /g  `  G ) y )  e.  ( `' F " { U } ) ) )
54 eleq2 2496 . . . . . . . . . . 11  |-  ( ( `' F " { U } )  =  { W }  ->  ( ( x (  /g  `  G
) y )  e.  ( `' F " { U } )  <->  ( x
(  /g  `  G ) y )  e.  { W } ) )
5553, 54sylan9bb 681 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( x  e.  X  /\  y  e.  X
) )  /\  ( `' F " { U } )  =  { W } )  ->  (
( F `  (
x (  /g  `  G
) y ) )  e.  { U }  <->  ( x (  /g  `  G
) y )  e. 
{ W } ) )
5655an32s 780 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  ( x
(  /g  `  G ) y ) )  e. 
{ U }  <->  ( x
(  /g  `  G ) y )  e.  { W } ) )
57 elsni 3830 . . . . . . . . . . 11  |-  ( ( x (  /g  `  G
) y )  e. 
{ W }  ->  ( x (  /g  `  G
) y )  =  W )
585, 1, 33grpoeqdivid 26547 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  x  e.  X  /\  y  e.  X )  ->  (
x  =  y  <->  ( x
(  /g  `  G ) y )  =  W ) )
5958biimprd 215 . . . . . . . . . . . . 13  |-  ( ( G  e.  GrpOp  /\  x  e.  X  /\  y  e.  X )  ->  (
( x (  /g  `  G ) y )  =  W  ->  x  =  y ) )
60593expb 1154 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( (
x (  /g  `  G
) y )  =  W  ->  x  =  y ) )
61603ad2antl1 1119 . . . . . . . . . . 11  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x (  /g  `  G ) y )  =  W  ->  x  =  y ) )
6257, 61syl5 30 . . . . . . . . . 10  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x (  /g  `  G ) y )  e.  { W }  ->  x  =  y ) )
6362adantlr 696 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( (
x (  /g  `  G
) y )  e. 
{ W }  ->  x  =  y ) )
6456, 63sylbid 207 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  ( x
(  /g  `  G ) y ) )  e. 
{ U }  ->  x  =  y ) )
6541, 64syl5 30 . . . . . . 7  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  ( x
(  /g  `  G ) y ) )  =  U  ->  x  =  y ) )
6636, 65sylbird 227 . . . . . 6  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( (
( F `  x
) (  /g  `  H
) ( F `  y ) )  =  U  ->  x  =  y ) )
6732, 66sylbid 207 . . . . 5  |-  ( ( ( ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  /\  ( `' F " { U } )  =  { W } )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
6867ralrimivva 2790 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( `' F " { U }
)  =  { W } )  ->  A. x  e.  X  A. y  e.  X  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
69 dff13 5996 . . . 4  |-  ( F : X -1-1-> Y  <->  ( F : X --> Y  /\  A. x  e.  X  A. y  e.  X  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
7023, 68, 69sylanbrc 646 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( `' F " { U }
)  =  { W } )  ->  F : X -1-1-> Y )
7170ex 424 . 2  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( ( `' F " { U } )  =  { W }  ->  F : X -1-1-> Y ) )
7222, 71impbid 184 1  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  ( F : X -1-1-> Y  <->  ( `' F " { U } )  =  { W }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948    C_ wss 3312   {csn 3806   `'ccnv 4869   dom cdm 4870   ran crn 4871   "cima 4873   Fun wfun 5440    Fn wfn 5441   -->wf 5442   -1-1->wf1 5443   ` cfv 5446  (class class class)co 6073   GrpOpcgr 21766  GIdcgi 21767    /g cgs 21769   GrpOpHom cghom 21937
This theorem is referenced by:  rngokerinj  26582
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-grpo 21771  df-gid 21772  df-ginv 21773  df-gdiv 21774  df-ghom 21938
  Copyright terms: Public domain W3C validator