MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpolcan Unicode version

Theorem grpolcan 21782
Description: Left cancellation law for groups. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grplcan.1  |-  X  =  ran  G
Assertion
Ref Expression
grpolcan  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( C G A )  =  ( C G B )  <->  A  =  B
) )

Proof of Theorem grpolcan
StepHypRef Expression
1 oveq2 6056 . . . . . 6  |-  ( ( C G A )  =  ( C G B )  ->  (
( ( inv `  G
) `  C ) G ( C G A ) )  =  ( ( ( inv `  G ) `  C
) G ( C G B ) ) )
21adantl 453 . . . . 5  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( C G A )  =  ( C G B ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G A ) )  =  ( ( ( inv `  G ) `
 C ) G ( C G B ) ) )
3 grplcan.1 . . . . . . . . . . 11  |-  X  =  ran  G
4 eqid 2412 . . . . . . . . . . 11  |-  (GId `  G )  =  (GId
`  G )
5 eqid 2412 . . . . . . . . . . 11  |-  ( inv `  G )  =  ( inv `  G )
63, 4, 5grpolinv 21777 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( ( inv `  G
) `  C ) G C )  =  (GId
`  G ) )
76adantlr 696 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (
( inv `  G
) `  C ) G C )  =  (GId
`  G ) )
87oveq1d 6063 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G A )  =  ( (GId
`  G ) G A ) )
93, 5grpoinvcl 21775 . . . . . . . . . . . 12  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( inv `  G
) `  C )  e.  X )
109adantrl 697 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  ( ( inv `  G ) `  C )  e.  X
)
11 simprr 734 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
12 simprl 733 . . . . . . . . . . 11  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
1310, 11, 123jca 1134 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  ( (
( inv `  G
) `  C )  e.  X  /\  C  e.  X  /\  A  e.  X ) )
143grpoass 21752 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  (
( ( inv `  G
) `  C )  e.  X  /\  C  e.  X  /\  A  e.  X ) )  -> 
( ( ( ( inv `  G ) `
 C ) G C ) G A )  =  ( ( ( inv `  G
) `  C ) G ( C G A ) ) )
1513, 14syldan 457 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G A )  =  ( ( ( inv `  G
) `  C ) G ( C G A ) ) )
1615anassrs 630 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G A )  =  ( ( ( inv `  G
) `  C ) G ( C G A ) ) )
173, 4grpolid 21768 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
(GId `  G ) G A )  =  A )
1817adantr 452 . . . . . . . 8  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (GId `  G ) G A )  =  A )
198, 16, 183eqtr3d 2452 . . . . . . 7  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  C  e.  X
)  ->  ( (
( inv `  G
) `  C ) G ( C G A ) )  =  A )
2019adantrl 697 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G A ) )  =  A )
2120adantr 452 . . . . 5  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( C G A )  =  ( C G B ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G A ) )  =  A )
226adantrl 697 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( inv `  G
) `  C ) G C )  =  (GId
`  G ) )
2322oveq1d 6063 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G B )  =  ( (GId
`  G ) G B ) )
249adantrl 697 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( ( inv `  G ) `  C )  e.  X
)
25 simprr 734 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
26 simprl 733 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
2724, 25, 263jca 1134 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( inv `  G
) `  C )  e.  X  /\  C  e.  X  /\  B  e.  X ) )
283grpoass 21752 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  (
( ( inv `  G
) `  C )  e.  X  /\  C  e.  X  /\  B  e.  X ) )  -> 
( ( ( ( inv `  G ) `
 C ) G C ) G B )  =  ( ( ( inv `  G
) `  C ) G ( C G B ) ) )
2927, 28syldan 457 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( ( inv `  G
) `  C ) G C ) G B )  =  ( ( ( inv `  G
) `  C ) G ( C G B ) ) )
303, 4grpolid 21768 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  (
(GId `  G ) G B )  =  B )
3130adantrr 698 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (GId `  G ) G B )  =  B )
3223, 29, 313eqtr3d 2452 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X )
)  ->  ( (
( inv `  G
) `  C ) G ( C G B ) )  =  B )
3332adantlr 696 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G B ) )  =  B )
3433adantr 452 . . . . 5  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( C G A )  =  ( C G B ) )  -> 
( ( ( inv `  G ) `  C
) G ( C G B ) )  =  B )
352, 21, 343eqtr3d 2452 . . . 4  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( C G A )  =  ( C G B ) )  ->  A  =  B )
3635exp53 601 . . 3  |-  ( G  e.  GrpOp  ->  ( A  e.  X  ->  ( B  e.  X  ->  ( C  e.  X  ->  ( ( C G A )  =  ( C G B )  ->  A  =  B )
) ) ) )
37363imp2 1168 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( C G A )  =  ( C G B )  ->  A  =  B ) )
38 oveq2 6056 . 2  |-  ( A  =  B  ->  ( C G A )  =  ( C G B ) )
3937, 38impbid1 195 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( C G A )  =  ( C G B )  <->  A  =  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   ran crn 4846   ` cfv 5421  (class class class)co 6048   GrpOpcgr 21735  GIdcgi 21736   invcgn 21737
This theorem is referenced by:  grpo2inv  21788  rngolcan  21946  rngolz  21950  vclcan  22005  nvlcan  22066
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-riota 6516  df-grpo 21740  df-gid 21741  df-ginv 21742
  Copyright terms: Public domain W3C validator