MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpolinv Unicode version

Theorem grpolinv 20911
Description: The left inverse of a group element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1  |-  X  =  ran  G
grpinv.2  |-  U  =  (GId `  G )
grpinv.3  |-  N  =  ( inv `  G
)
Assertion
Ref Expression
grpolinv  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( N `  A
) G A )  =  U )

Proof of Theorem grpolinv
StepHypRef Expression
1 grpinv.1 . . 3  |-  X  =  ran  G
2 grpinv.2 . . 3  |-  U  =  (GId `  G )
3 grpinv.3 . . 3  |-  N  =  ( inv `  G
)
41, 2, 3grpoinv 20910 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( N `  A ) G A )  =  U  /\  ( A G ( N `
 A ) )  =  U ) )
54simpld 445 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( N `  A
) G A )  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   ran crn 4706   ` cfv 5271  (class class class)co 5874   GrpOpcgr 20869  GIdcgi 20870   invcgn 20871
This theorem is referenced by:  grpoinvid1  20913  grpoinvid2  20914  grpolcan  20916  grpo2grp  20917  grpoasscan2  20921  grpo2inv  20922  grponpcan  20935  issubgoi  20993  vclinv  21145  nvlinv  21228  trran2  25496  rltrran  25517  rngoaddneg2  26681  isdrngo2  26692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-riota 6320  df-grpo 20874  df-gid 20875  df-ginv 20876
  Copyright terms: Public domain W3C validator