MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpomndo Unicode version

Theorem grpomndo 21782
Description: A group is a monoid. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
grpomndo  |-  ( G  e.  GrpOp  ->  G  e. MndOp )

Proof of Theorem grpomndo
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2387 . . . . 5  |-  ran  G  =  ran  G
21isgrpo 21632 . . . 4  |-  ( G  e.  GrpOp  ->  ( G  e.  GrpOp 
<->  ( G : ( ran  G  X.  ran  G ) --> ran  G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. w  e.  ran  G A. x  e.  ran  G ( ( w G x )  =  x  /\  E. y  e. 
ran  G ( y G x )  =  w ) ) ) )
32biimpd 199 . . 3  |-  ( G  e.  GrpOp  ->  ( G  e.  GrpOp  ->  ( G : ( ran  G  X.  ran  G ) --> ran 
G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. w  e.  ran  G A. x  e.  ran  G ( ( w G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  w ) ) ) )
41grpoidinv 21644 . . . . . . . 8  |-  ( G  e.  GrpOp  ->  E. x  e.  ran  G A. y  e.  ran  G ( ( ( x G y )  =  y  /\  ( y G x )  =  y )  /\  E. w  e. 
ran  G ( ( w G y )  =  x  /\  (
y G w )  =  x ) ) )
5 simpl 444 . . . . . . . . . . 11  |-  ( ( ( ( x G y )  =  y  /\  ( y G x )  =  y )  /\  E. w  e.  ran  G ( ( w G y )  =  x  /\  (
y G w )  =  x ) )  ->  ( ( x G y )  =  y  /\  ( y G x )  =  y ) )
65ralimi 2724 . . . . . . . . . 10  |-  ( A. y  e.  ran  G ( ( ( x G y )  =  y  /\  ( y G x )  =  y )  /\  E. w  e.  ran  G ( ( w G y )  =  x  /\  (
y G w )  =  x ) )  ->  A. y  e.  ran  G ( ( x G y )  =  y  /\  ( y G x )  =  y ) )
76reximi 2756 . . . . . . . . 9  |-  ( E. x  e.  ran  G A. y  e.  ran  G ( ( ( x G y )  =  y  /\  ( y G x )  =  y )  /\  E. w  e.  ran  G ( ( w G y )  =  x  /\  ( y G w )  =  x ) )  ->  E. x  e.  ran  G A. y  e.  ran  G ( ( x G y )  =  y  /\  (
y G x )  =  y ) )
81ismndo2 21781 . . . . . . . . . . . . 13  |-  ( G  e.  GrpOp  ->  ( G  e. MndOp  <-> 
( G : ( ran  G  X.  ran  G ) --> ran  G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  ran  G A. y  e.  ran  G ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) ) )
98biimprcd 217 . . . . . . . . . . . 12  |-  ( ( G : ( ran 
G  X.  ran  G
) --> ran  G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. x  e.  ran  G A. y  e.  ran  G ( ( x G y )  =  y  /\  ( y G x )  =  y ) )  ->  ( G  e.  GrpOp  ->  G  e. MndOp ) )
1093exp 1152 . . . . . . . . . . 11  |-  ( G : ( ran  G  X.  ran  G ) --> ran 
G  ->  ( A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  ->  ( E. x  e.  ran  G A. y  e.  ran  G ( ( x G y )  =  y  /\  ( y G x )  =  y )  ->  ( G  e.  GrpOp  ->  G  e. MndOp ) ) ) )
1110impcom 420 . . . . . . . . . 10  |-  ( ( A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  G : ( ran  G  X.  ran  G ) --> ran 
G )  ->  ( E. x  e.  ran  G A. y  e.  ran  G ( ( x G y )  =  y  /\  ( y G x )  =  y )  ->  ( G  e.  GrpOp  ->  G  e. MndOp ) ) )
1211com3l 77 . . . . . . . . 9  |-  ( E. x  e.  ran  G A. y  e.  ran  G ( ( x G y )  =  y  /\  ( y G x )  =  y )  ->  ( G  e.  GrpOp  ->  ( ( A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  G : ( ran  G  X.  ran  G ) --> ran 
G )  ->  G  e. MndOp ) ) )
137, 12syl 16 . . . . . . . 8  |-  ( E. x  e.  ran  G A. y  e.  ran  G ( ( ( x G y )  =  y  /\  ( y G x )  =  y )  /\  E. w  e.  ran  G ( ( w G y )  =  x  /\  ( y G w )  =  x ) )  ->  ( G  e.  GrpOp  ->  ( ( A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  G : ( ran  G  X.  ran  G ) --> ran 
G )  ->  G  e. MndOp ) ) )
144, 13mpcom 34 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ( ( A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  G : ( ran  G  X.  ran  G ) --> ran 
G )  ->  G  e. MndOp ) )
1514exp3acom3r 1376 . . . . . 6  |-  ( A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  ->  ( G : ( ran  G  X.  ran  G ) --> ran 
G  ->  ( G  e.  GrpOp  ->  G  e. MndOp ) ) )
1615a1i 11 . . . . 5  |-  ( E. w  e.  ran  G A. x  e.  ran  G ( ( w G x )  =  x  /\  E. y  e. 
ran  G ( y G x )  =  w )  ->  ( A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  -> 
( G : ( ran  G  X.  ran  G ) --> ran  G  ->  ( G  e.  GrpOp  ->  G  e. MndOp ) ) ) )
1716com13 76 . . . 4  |-  ( G : ( ran  G  X.  ran  G ) --> ran 
G  ->  ( A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  ->  ( E. w  e.  ran  G A. x  e.  ran  G ( ( w G x )  =  x  /\  E. y  e. 
ran  G ( y G x )  =  w )  ->  ( G  e.  GrpOp  ->  G  e. MndOp ) ) ) )
18173imp 1147 . . 3  |-  ( ( G : ( ran 
G  X.  ran  G
) --> ran  G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. w  e.  ran  G A. x  e.  ran  G ( ( w G x )  =  x  /\  E. y  e. 
ran  G ( y G x )  =  w ) )  -> 
( G  e.  GrpOp  ->  G  e. MndOp ) )
193, 18syli 35 . 2  |-  ( G  e.  GrpOp  ->  ( G  e.  GrpOp  ->  G  e. MndOp ) )
2019pm2.43i 45 1  |-  ( G  e.  GrpOp  ->  G  e. MndOp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650    X. cxp 4816   ran crn 4819   -->wf 5390  (class class class)co 6020   GrpOpcgr 21622  MndOpcmndo 21773
This theorem is referenced by:  isdrngo2  26265
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-fo 5400  df-fv 5402  df-ov 6023  df-grpo 21627  df-ass 21749  df-exid 21751  df-mgm 21755  df-sgr 21767  df-mndo 21774
  Copyright terms: Public domain W3C validator