Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpon0 Structured version   Unicode version

Theorem grpon0 21821
 Description: The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1
Assertion
Ref Expression
grpon0

Proof of Theorem grpon0
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpfo.1 . . 3
21grpolidinv 21820 . 2
3 rexn0 3754 . 2
42, 3syl 16 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wceq 1653   wcel 1727   wne 2605  wral 2711  wrex 2712  c0 3613   crn 4908  (class class class)co 6110  cgr 21805 This theorem is referenced by:  0ngrp  21830  rngon0  22035  vcoprnelem  22088 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pr 4432  ax-un 4730 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-fo 5489  df-fv 5491  df-ov 6113  df-grpo 21810
 Copyright terms: Public domain W3C validator