MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grponnncan2 Structured version   Unicode version

Theorem grponnncan2 21842
Description: Cancellation law for group division. (nnncan2 9338 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1  |-  X  =  ran  G
grpdivf.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
grponnncan2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D C ) D ( B D C ) )  =  ( A D B ) )

Proof of Theorem grponnncan2
StepHypRef Expression
1 grpdivf.1 . . . . 5  |-  X  =  ran  G
2 eqid 2436 . . . . 5  |-  ( inv `  G )  =  ( inv `  G )
3 grpdivf.3 . . . . 5  |-  D  =  (  /g  `  G
)
41, 2, 3grpodivval 21831 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A D C )  =  ( A G ( ( inv `  G
) `  C )
) )
543adant3r2 1163 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D C )  =  ( A G ( ( inv `  G ) `
 C ) ) )
61, 2, 3grpodivval 21831 . . . 4  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B D C )  =  ( B G ( ( inv `  G
) `  C )
) )
763adant3r1 1162 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D C )  =  ( B G ( ( inv `  G ) `
 C ) ) )
85, 7oveq12d 6099 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D C ) D ( B D C ) )  =  ( ( A G ( ( inv `  G
) `  C )
) D ( B G ( ( inv `  G ) `  C
) ) ) )
9 idd 22 . . . . 5  |-  ( G  e.  GrpOp  ->  ( A  e.  X  ->  A  e.  X ) )
10 idd 22 . . . . 5  |-  ( G  e.  GrpOp  ->  ( B  e.  X  ->  B  e.  X ) )
111, 2grpoinvcl 21814 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( inv `  G
) `  C )  e.  X )
1211ex 424 . . . . 5  |-  ( G  e.  GrpOp  ->  ( C  e.  X  ->  ( ( inv `  G ) `
 C )  e.  X ) )
139, 10, 123anim123d 1261 . . . 4  |-  ( G  e.  GrpOp  ->  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( A  e.  X  /\  B  e.  X  /\  ( ( inv `  G
) `  C )  e.  X ) ) )
1413imp 419 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A  e.  X  /\  B  e.  X  /\  ( ( inv `  G ) `
 C )  e.  X ) )
151, 3grpopnpcan2 21841 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( inv `  G
) `  C )  e.  X ) )  -> 
( ( A G ( ( inv `  G
) `  C )
) D ( B G ( ( inv `  G ) `  C
) ) )  =  ( A D B ) )
1614, 15syldan 457 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G ( ( inv `  G ) `  C
) ) D ( B G ( ( inv `  G ) `
 C ) ) )  =  ( A D B ) )
178, 16eqtrd 2468 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D C ) D ( B D C ) )  =  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ran crn 4879   ` cfv 5454  (class class class)co 6081   GrpOpcgr 21774   invcgn 21776    /g cgs 21777
This theorem is referenced by:  nvnnncan2  22130
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-grpo 21779  df-gid 21780  df-ginv 21781  df-gdiv 21782
  Copyright terms: Public domain W3C validator