MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grponnncan2 Unicode version

Theorem grponnncan2 20974
Description: Cancellation law for group division. (nnncan2 9129 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1  |-  X  =  ran  G
grpdivf.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
grponnncan2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D C ) D ( B D C ) )  =  ( A D B ) )

Proof of Theorem grponnncan2
StepHypRef Expression
1 grpdivf.1 . . . . 5  |-  X  =  ran  G
2 eqid 2316 . . . . 5  |-  ( inv `  G )  =  ( inv `  G )
3 grpdivf.3 . . . . 5  |-  D  =  (  /g  `  G
)
41, 2, 3grpodivval 20963 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A D C )  =  ( A G ( ( inv `  G
) `  C )
) )
543adant3r2 1161 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D C )  =  ( A G ( ( inv `  G ) `
 C ) ) )
61, 2, 3grpodivval 20963 . . . 4  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B D C )  =  ( B G ( ( inv `  G
) `  C )
) )
763adant3r1 1160 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D C )  =  ( B G ( ( inv `  G ) `
 C ) ) )
85, 7oveq12d 5918 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D C ) D ( B D C ) )  =  ( ( A G ( ( inv `  G
) `  C )
) D ( B G ( ( inv `  G ) `  C
) ) ) )
9 idd 21 . . . . 5  |-  ( G  e.  GrpOp  ->  ( A  e.  X  ->  A  e.  X ) )
10 idd 21 . . . . 5  |-  ( G  e.  GrpOp  ->  ( B  e.  X  ->  B  e.  X ) )
111, 2grpoinvcl 20946 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( inv `  G
) `  C )  e.  X )
1211ex 423 . . . . 5  |-  ( G  e.  GrpOp  ->  ( C  e.  X  ->  ( ( inv `  G ) `
 C )  e.  X ) )
139, 10, 123anim123d 1259 . . . 4  |-  ( G  e.  GrpOp  ->  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( A  e.  X  /\  B  e.  X  /\  ( ( inv `  G
) `  C )  e.  X ) ) )
1413imp 418 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A  e.  X  /\  B  e.  X  /\  ( ( inv `  G ) `
 C )  e.  X ) )
151, 3grpopnpcan2 20973 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( inv `  G
) `  C )  e.  X ) )  -> 
( ( A G ( ( inv `  G
) `  C )
) D ( B G ( ( inv `  G ) `  C
) ) )  =  ( A D B ) )
1614, 15syldan 456 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G ( ( inv `  G ) `  C
) ) D ( B G ( ( inv `  G ) `
 C ) ) )  =  ( A D B ) )
178, 16eqtrd 2348 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D C ) D ( B D C ) )  =  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701   ran crn 4727   ` cfv 5292  (class class class)co 5900   GrpOpcgr 20906   invcgn 20908    /g cgs 20909
This theorem is referenced by:  nvnnncan2  21262
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-riota 6346  df-grpo 20911  df-gid 20912  df-ginv 20913  df-gdiv 20914
  Copyright terms: Public domain W3C validator