MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grponnncan2 Unicode version

Theorem grponnncan2 20921
Description: Cancellation law for group division. (nnncan2 9084 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1  |-  X  =  ran  G
grpdivf.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
grponnncan2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D C ) D ( B D C ) )  =  ( A D B ) )

Proof of Theorem grponnncan2
StepHypRef Expression
1 grpdivf.1 . . . . 5  |-  X  =  ran  G
2 eqid 2283 . . . . 5  |-  ( inv `  G )  =  ( inv `  G )
3 grpdivf.3 . . . . 5  |-  D  =  (  /g  `  G
)
41, 2, 3grpodivval 20910 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A D C )  =  ( A G ( ( inv `  G
) `  C )
) )
543adant3r2 1161 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D C )  =  ( A G ( ( inv `  G ) `
 C ) ) )
61, 2, 3grpodivval 20910 . . . 4  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B D C )  =  ( B G ( ( inv `  G
) `  C )
) )
763adant3r1 1160 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D C )  =  ( B G ( ( inv `  G ) `
 C ) ) )
85, 7oveq12d 5876 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D C ) D ( B D C ) )  =  ( ( A G ( ( inv `  G
) `  C )
) D ( B G ( ( inv `  G ) `  C
) ) ) )
9 idd 21 . . . . 5  |-  ( G  e.  GrpOp  ->  ( A  e.  X  ->  A  e.  X ) )
10 idd 21 . . . . 5  |-  ( G  e.  GrpOp  ->  ( B  e.  X  ->  B  e.  X ) )
111, 2grpoinvcl 20893 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( inv `  G
) `  C )  e.  X )
1211ex 423 . . . . 5  |-  ( G  e.  GrpOp  ->  ( C  e.  X  ->  ( ( inv `  G ) `
 C )  e.  X ) )
139, 10, 123anim123d 1259 . . . 4  |-  ( G  e.  GrpOp  ->  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( A  e.  X  /\  B  e.  X  /\  ( ( inv `  G
) `  C )  e.  X ) ) )
1413imp 418 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A  e.  X  /\  B  e.  X  /\  ( ( inv `  G ) `
 C )  e.  X ) )
151, 3grpopnpcan2 20920 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( inv `  G
) `  C )  e.  X ) )  -> 
( ( A G ( ( inv `  G
) `  C )
) D ( B G ( ( inv `  G ) `  C
) ) )  =  ( A D B ) )
1614, 15syldan 456 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G ( ( inv `  G ) `  C
) ) D ( B G ( ( inv `  G ) `
 C ) ) )  =  ( A D B ) )
178, 16eqtrd 2315 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D C ) D ( B D C ) )  =  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   ran crn 4690   ` cfv 5255  (class class class)co 5858   GrpOpcgr 20853   invcgn 20855    /g cgs 20856
This theorem is referenced by:  nvnnncan2  21207
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861
  Copyright terms: Public domain W3C validator