MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpopnpcan2 Unicode version

Theorem grpopnpcan2 21682
Description: Cancellation law for mixed addition and group division. (pnpcan2 9266 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1  |-  X  =  ran  G
grpdivf.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
grpopnpcan2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C ) D ( B G C ) )  =  ( A D B ) )

Proof of Theorem grpopnpcan2
StepHypRef Expression
1 simpl 444 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  G  e.  GrpOp
)
2 grpdivf.1 . . . . 5  |-  X  =  ran  G
32grpocl 21629 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A G C )  e.  X )
433adant3r2 1163 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A G C )  e.  X
)
52grpocl 21629 . . . 4  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B G C )  e.  X )
653adant3r1 1162 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B G C )  e.  X
)
7 eqid 2380 . . . 4  |-  ( inv `  G )  =  ( inv `  G )
8 grpdivf.3 . . . 4  |-  D  =  (  /g  `  G
)
92, 7, 8grpodivval 21672 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A G C )  e.  X  /\  ( B G C )  e.  X )  ->  (
( A G C ) D ( B G C ) )  =  ( ( A G C ) G ( ( inv `  G
) `  ( B G C ) ) ) )
101, 4, 6, 9syl3anc 1184 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C ) D ( B G C ) )  =  ( ( A G C ) G ( ( inv `  G ) `
 ( B G C ) ) ) )
112, 7grpoinvop 21670 . . . 4  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  (
( inv `  G
) `  ( B G C ) )  =  ( ( ( inv `  G ) `  C
) G ( ( inv `  G ) `
 B ) ) )
12113adant3r1 1162 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( inv `  G ) `  ( B G C ) )  =  ( ( ( inv `  G
) `  C ) G ( ( inv `  G ) `  B
) ) )
1312oveq2d 6029 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C ) G ( ( inv `  G
) `  ( B G C ) ) )  =  ( ( A G C ) G ( ( ( inv `  G ) `  C
) G ( ( inv `  G ) `
 B ) ) ) )
14 eqid 2380 . . . . . . . . 9  |-  (GId `  G )  =  (GId
`  G )
152, 14, 7grporinv 21658 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  ( C G ( ( inv `  G ) `  C
) )  =  (GId
`  G ) )
16153adant2 976 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  ( C G ( ( inv `  G ) `  C
) )  =  (GId
`  G ) )
1716oveq1d 6028 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  (
( C G ( ( inv `  G
) `  C )
) G ( ( inv `  G ) `
 B ) )  =  ( (GId `  G ) G ( ( inv `  G
) `  B )
) )
18 simp1 957 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  G  e.  GrpOp )
19 simp3 959 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  C  e.  X )
202, 7grpoinvcl 21655 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( inv `  G
) `  C )  e.  X )
21203adant2 976 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  (
( inv `  G
) `  C )  e.  X )
222, 7grpoinvcl 21655 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  (
( inv `  G
) `  B )  e.  X )
23223adant3 977 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  (
( inv `  G
) `  B )  e.  X )
242grpoass 21632 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  ( C  e.  X  /\  ( ( inv `  G
) `  C )  e.  X  /\  (
( inv `  G
) `  B )  e.  X ) )  -> 
( ( C G ( ( inv `  G
) `  C )
) G ( ( inv `  G ) `
 B ) )  =  ( C G ( ( ( inv `  G ) `  C
) G ( ( inv `  G ) `
 B ) ) ) )
2518, 19, 21, 23, 24syl13anc 1186 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  (
( C G ( ( inv `  G
) `  C )
) G ( ( inv `  G ) `
 B ) )  =  ( C G ( ( ( inv `  G ) `  C
) G ( ( inv `  G ) `
 B ) ) ) )
262, 14grpolid 21648 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  (
( inv `  G
) `  B )  e.  X )  ->  (
(GId `  G ) G ( ( inv `  G ) `  B
) )  =  ( ( inv `  G
) `  B )
)
2722, 26syldan 457 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  (
(GId `  G ) G ( ( inv `  G ) `  B
) )  =  ( ( inv `  G
) `  B )
)
28273adant3 977 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  (
(GId `  G ) G ( ( inv `  G ) `  B
) )  =  ( ( inv `  G
) `  B )
)
2917, 25, 283eqtr3d 2420 . . . . 5  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  ( C G ( ( ( inv `  G ) `
 C ) G ( ( inv `  G
) `  B )
) )  =  ( ( inv `  G
) `  B )
)
30293adant3r1 1162 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( C G ( ( ( inv `  G ) `
 C ) G ( ( inv `  G
) `  B )
) )  =  ( ( inv `  G
) `  B )
)
3130oveq2d 6029 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A G ( C G ( ( ( inv `  G ) `  C
) G ( ( inv `  G ) `
 B ) ) ) )  =  ( A G ( ( inv `  G ) `
 B ) ) )
32 simpr1 963 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
33 simpr3 965 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
34203ad2antr3 1124 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( inv `  G ) `  C )  e.  X
)
35223ad2antr2 1123 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( inv `  G ) `  B )  e.  X
)
362grpocl 21629 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( inv `  G
) `  C )  e.  X  /\  (
( inv `  G
) `  B )  e.  X )  ->  (
( ( inv `  G
) `  C ) G ( ( inv `  G ) `  B
) )  e.  X
)
371, 34, 35, 36syl3anc 1184 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( (
( inv `  G
) `  C ) G ( ( inv `  G ) `  B
) )  e.  X
)
382grpoass 21632 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X  /\  ( ( ( inv `  G ) `  C
) G ( ( inv `  G ) `
 B ) )  e.  X ) )  ->  ( ( A G C ) G ( ( ( inv `  G ) `  C
) G ( ( inv `  G ) `
 B ) ) )  =  ( A G ( C G ( ( ( inv `  G ) `  C
) G ( ( inv `  G ) `
 B ) ) ) ) )
391, 32, 33, 37, 38syl13anc 1186 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C ) G ( ( ( inv `  G ) `  C
) G ( ( inv `  G ) `
 B ) ) )  =  ( A G ( C G ( ( ( inv `  G ) `  C
) G ( ( inv `  G ) `
 B ) ) ) ) )
402, 7, 8grpodivval 21672 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  =  ( A G ( ( inv `  G
) `  B )
) )
41403adant3r3 1164 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  =  ( A G ( ( inv `  G ) `
 B ) ) )
4231, 39, 413eqtr4d 2422 . 2  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C ) G ( ( ( inv `  G ) `  C
) G ( ( inv `  G ) `
 B ) ) )  =  ( A D B ) )
4310, 13, 423eqtrd 2416 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C ) D ( B G C ) )  =  ( A D B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   ran crn 4812   ` cfv 5387  (class class class)co 6013   GrpOpcgr 21615  GIdcgi 21616   invcgn 21617    /g cgs 21618
This theorem is referenced by:  grponnncan2  21683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-grpo 21620  df-gid 21621  df-ginv 21622  df-gdiv 21623
  Copyright terms: Public domain W3C validator