MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporcan Structured version   Unicode version

Theorem grporcan 21802
Description: Right cancellation law for groups. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grprcan.1  |-  X  =  ran  G
Assertion
Ref Expression
grporcan  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B
) )

Proof of Theorem grporcan
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 grprcan.1 . . . . . . . 8  |-  X  =  ran  G
2 eqid 2436 . . . . . . . 8  |-  (GId `  G )  =  (GId
`  G )
31, 2grpoidinv2 21799 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( ( (GId `  G ) G C )  =  C  /\  ( C G (GId `  G ) )  =  C )  /\  E. y  e.  X  (
( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
) ) )
4 simpr 448 . . . . . . . . 9  |-  ( ( ( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
)  ->  ( C G y )  =  (GId `  G )
)
54reximi 2806 . . . . . . . 8  |-  ( E. y  e.  X  ( ( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
)  ->  E. y  e.  X  ( C G y )  =  (GId `  G )
)
65adantl 453 . . . . . . 7  |-  ( ( ( ( (GId `  G ) G C )  =  C  /\  ( C G (GId `  G ) )  =  C )  /\  E. y  e.  X  (
( y G C )  =  (GId `  G )  /\  ( C G y )  =  (GId `  G )
) )  ->  E. y  e.  X  ( C G y )  =  (GId `  G )
)
73, 6syl 16 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  E. y  e.  X  ( C G y )  =  (GId `  G )
)
87ad2ant2rl 730 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  ->  E. y  e.  X  ( C G y )  =  (GId `  G
) )
9 oveq1 6081 . . . . . . . . . . . 12  |-  ( ( A G C )  =  ( B G C )  ->  (
( A G C ) G y )  =  ( ( B G C ) G y ) )
109ad2antll 710 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( ( A G C ) G y )  =  ( ( B G C ) G y ) )
111grpoass 21784 . . . . . . . . . . . . . 14  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X  /\  y  e.  X )
)  ->  ( ( A G C ) G y )  =  ( A G ( C G y ) ) )
12113anassrs 1175 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  C  e.  X )  /\  y  e.  X )  ->  (
( A G C ) G y )  =  ( A G ( C G y ) ) )
1312adantlrl 701 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  y  e.  X )  ->  ( ( A G C ) G y )  =  ( A G ( C G y ) ) )
1413adantrr 698 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( ( A G C ) G y )  =  ( A G ( C G y ) ) )
151grpoass 21784 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X  /\  y  e.  X )
)  ->  ( ( B G C ) G y )  =  ( B G ( C G y ) ) )
16153exp2 1171 . . . . . . . . . . . . . 14  |-  ( G  e.  GrpOp  ->  ( B  e.  X  ->  ( C  e.  X  ->  (
y  e.  X  -> 
( ( B G C ) G y )  =  ( B G ( C G y ) ) ) ) ) )
1716imp42 578 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  GrpOp  /\  ( B  e.  X  /\  C  e.  X
) )  /\  y  e.  X )  ->  (
( B G C ) G y )  =  ( B G ( C G y ) ) )
1817adantllr 700 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  y  e.  X )  ->  ( ( B G C ) G y )  =  ( B G ( C G y ) ) )
1918adantrr 698 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( ( B G C ) G y )  =  ( B G ( C G y ) ) )
2010, 14, 193eqtr3d 2476 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( A G C )  =  ( B G C ) ) )  ->  ( A G ( C G y ) )  =  ( B G ( C G y ) ) )
2120adantrrl 705 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G ( C G y ) )  =  ( B G ( C G y ) ) )
22 oveq2 6082 . . . . . . . . . . 11  |-  ( ( C G y )  =  (GId `  G
)  ->  ( A G ( C G y ) )  =  ( A G (GId
`  G ) ) )
2322ad2antrl 709 . . . . . . . . . 10  |-  ( ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) )  ->  ( A G ( C G y ) )  =  ( A G (GId `  G ) ) )
2423adantl 453 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G ( C G y ) )  =  ( A G (GId
`  G ) ) )
25 oveq2 6082 . . . . . . . . . . 11  |-  ( ( C G y )  =  (GId `  G
)  ->  ( B G ( C G y ) )  =  ( B G (GId
`  G ) ) )
2625ad2antrl 709 . . . . . . . . . 10  |-  ( ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) )  ->  ( B G ( C G y ) )  =  ( B G (GId `  G ) ) )
2726adantl 453 . . . . . . . . 9  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( B G ( C G y ) )  =  ( B G (GId
`  G ) ) )
2821, 24, 273eqtr3d 2476 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G (GId `  G )
)  =  ( B G (GId `  G
) ) )
291, 2grporid 21801 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G (GId `  G
) )  =  A )
3029ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( A G (GId `  G )
)  =  A )
311, 2grporid 21801 . . . . . . . . . 10  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  ( B G (GId `  G
) )  =  B )
3231ad2ant2r 728 . . . . . . . . 9  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( B G (GId
`  G ) )  =  B )
3332adantr 452 . . . . . . . 8  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  ( B G (GId `  G )
)  =  B )
3428, 30, 333eqtr3d 2476 . . . . . . 7  |-  ( ( ( ( G  e. 
GrpOp  /\  A  e.  X
)  /\  ( B  e.  X  /\  C  e.  X ) )  /\  ( y  e.  X  /\  ( ( C G y )  =  (GId
`  G )  /\  ( A G C )  =  ( B G C ) ) ) )  ->  A  =  B )
3534exp45 598 . . . . . 6  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( y  e.  X  ->  ( ( C G y )  =  (GId
`  G )  -> 
( ( A G C )  =  ( B G C )  ->  A  =  B ) ) ) )
3635rexlimdv 2822 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( E. y  e.  X  ( C G y )  =  (GId
`  G )  -> 
( ( A G C )  =  ( B G C )  ->  A  =  B ) ) )
378, 36mpd 15 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( A G C )  =  ( B G C )  ->  A  =  B ) )
38 oveq1 6081 . . . 4  |-  ( A  =  B  ->  ( A G C )  =  ( B G C ) )
3937, 38impbid1 195 . . 3  |-  ( ( ( G  e.  GrpOp  /\  A  e.  X )  /\  ( B  e.  X  /\  C  e.  X ) )  -> 
( ( A G C )  =  ( B G C )  <-> 
A  =  B ) )
4039exp43 596 . 2  |-  ( G  e.  GrpOp  ->  ( A  e.  X  ->  ( B  e.  X  ->  ( C  e.  X  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B ) ) ) ) )
41403imp2 1168 1  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G C )  =  ( B G C )  <->  A  =  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E.wrex 2699   ran crn 4872   ` cfv 5447  (class class class)co 6074   GrpOpcgr 21767  GIdcgi 21768
This theorem is referenced by:  grpoinveu  21803  grpoid  21804  grpodiveq  21837  rngorcan  21977  rngorz  21983  vcrcan  22036  nvrcan  22097  ghomdiv  26551
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pr 4396  ax-un 4694
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-reu 2705  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-id 4491  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-fo 5453  df-fv 5455  df-ov 6077  df-riota 6542  df-grpo 21772  df-gid 21773
  Copyright terms: Public domain W3C validator