MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporid Unicode version

Theorem grporid 21656
Description: The identity element of a group is a right identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoidval.1  |-  X  =  ran  G
grpoidval.2  |-  U  =  (GId `  G )
Assertion
Ref Expression
grporid  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G U )  =  A )

Proof of Theorem grporid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 grpoidval.1 . . 3  |-  X  =  ran  G
2 grpoidval.2 . . 3  |-  U  =  (GId `  G )
31, 2grpoidinv2 21654 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. x  e.  X  ( (
x G A )  =  U  /\  ( A G x )  =  U ) ) )
4 simplr 732 . 2  |-  ( ( ( ( U G A )  =  A  /\  ( A G U )  =  A )  /\  E. x  e.  X  ( (
x G A )  =  U  /\  ( A G x )  =  U ) )  -> 
( A G U )  =  A )
53, 4syl 16 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G U )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2650   ran crn 4819   ` cfv 5394  (class class class)co 6020   GrpOpcgr 21622  GIdcgi 21623
This theorem is referenced by:  grporcan  21657  grpoinvid1  21666  grpoinvid2  21667  grpoasscan2  21674  grpopncan  21687  grponpcan  21688  gxcom  21705  gxid  21709  gxnn0add  21710  gxmodid  21715  rngo0rid  21835  rngolz  21837  vc0rid  21894  vcm  21898  nv0rid  21964
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-fo 5400  df-fv 5402  df-ov 6023  df-riota 6485  df-grpo 21627  df-gid 21628
  Copyright terms: Public domain W3C validator