MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporinv Unicode version

Theorem grporinv 20896
Description: The right inverse of a group element. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1  |-  X  =  ran  G
grpinv.2  |-  U  =  (GId `  G )
grpinv.3  |-  N  =  ( inv `  G
)
Assertion
Ref Expression
grporinv  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G ( N `  A ) )  =  U )

Proof of Theorem grporinv
StepHypRef Expression
1 grpinv.1 . . 3  |-  X  =  ran  G
2 grpinv.2 . . 3  |-  U  =  (GId `  G )
3 grpinv.3 . . 3  |-  N  =  ( inv `  G
)
41, 2, 3grpoinv 20894 . 2  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  (
( ( N `  A ) G A )  =  U  /\  ( A G ( N `
 A ) )  =  U ) )
54simprd 449 1  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G ( N `  A ) )  =  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   ran crn 4690   ` cfv 5255  (class class class)co 5858   GrpOpcgr 20853  GIdcgi 20854   invcgn 20855
This theorem is referenced by:  grpoinvid1  20897  grpoinvid2  20898  grpoasscan1  20904  grpo2inv  20906  grpoinvop  20908  grpodivid  20917  grpopnpcan2  20920  subgoinv  20975  vcm  21127  vcrinv  21128  nvrinv  21211  ghomgrpilem2  23993  ghomf1olem  24001  ltrran2  25403  ltrinvlem  25406  rltrran  25414  multinv  25422  multinvb  25423  mulinvsca  25480  rngoaddneg1  26577
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-riota 6304  df-grpo 20858  df-gid 20859  df-ginv 20860
  Copyright terms: Public domain W3C validator