MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpplusf Structured version   Unicode version

Theorem grpplusf 14824
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grpplusf.1  |-  B  =  ( Base `  G
)
grpplusf.2  |-  F  =  ( + f `  G )
Assertion
Ref Expression
grpplusf  |-  ( G  e.  Grp  ->  F : ( B  X.  B ) --> B )

Proof of Theorem grpplusf
StepHypRef Expression
1 grpmnd 14819 . 2  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 grpplusf.1 . . 3  |-  B  =  ( Base `  G
)
3 grpplusf.2 . . 3  |-  F  =  ( + f `  G )
42, 3mndplusf 14708 . 2  |-  ( G  e.  Mnd  ->  F : ( B  X.  B ) --> B )
51, 4syl 16 1  |-  ( G  e.  Grp  ->  F : ( B  X.  B ) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726    X. cxp 4878   -->wf 5452   ` cfv 5456   Basecbs 13471   Mndcmnd 14686   Grpcgrp 14687   + fcplusf 14689
This theorem is referenced by:  symgtgp  18133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-mnd 14692  df-plusf 14693  df-grp 14814
  Copyright terms: Public domain W3C validator