MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grppnpcan2 Unicode version

Theorem grppnpcan2 14559
Description: Cancellation law for mixed addition and subtraction. (pnpcan2 9087 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
grpsubadd.b  |-  B  =  ( Base `  G
)
grpsubadd.p  |-  .+  =  ( +g  `  G )
grpsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grppnpcan2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Z
)  .-  ( Y  .+  Z ) )  =  ( X  .-  Y
) )

Proof of Theorem grppnpcan2
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  G  e.  Grp )
2 grpsubadd.b . . . . 5  |-  B  =  ( Base `  G
)
3 grpsubadd.p . . . . 5  |-  .+  =  ( +g  `  G )
42, 3grpcl 14495 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .+  Z
)  e.  B )
543adant3r2 1161 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .+  Z )  e.  B )
6 simpr3 963 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
7 simpr2 962 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
8 grpsubadd.m . . . 4  |-  .-  =  ( -g `  G )
92, 3, 8grpsubsub4 14558 . . 3  |-  ( ( G  e.  Grp  /\  ( ( X  .+  Z )  e.  B  /\  Z  e.  B  /\  Y  e.  B
) )  ->  (
( ( X  .+  Z )  .-  Z
)  .-  Y )  =  ( ( X 
.+  Z )  .-  ( Y  .+  Z ) ) )
101, 5, 6, 7, 9syl13anc 1184 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  .+  Z )  .-  Z
)  .-  Y )  =  ( ( X 
.+  Z )  .-  ( Y  .+  Z ) ) )
112, 3, 8grppncan 14556 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( X  .+  Z )  .-  Z
)  =  X )
12113adant3r2 1161 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Z
)  .-  Z )  =  X )
1312oveq1d 5873 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  .+  Z )  .-  Z
)  .-  Y )  =  ( X  .-  Y ) )
1410, 13eqtr3d 2317 1  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .+  Z
)  .-  ( Y  .+  Z ) )  =  ( X  .-  Y
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   Grpcgrp 14362   -gcsg 14365
This theorem is referenced by:  ngprcan  18131
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491
  Copyright terms: Public domain W3C validator