MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grppropd Unicode version

Theorem grppropd 14752
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grppropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
grppropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
grppropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
grppropd  |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
Distinct variable groups:    x, y, B    x, K, y    x, L, y    ph, x, y

Proof of Theorem grppropd
StepHypRef Expression
1 grppropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 grppropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
3 grppropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3mndpropd 14650 . . 3  |-  ( ph  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
51, 2, 3grpidpropd 14651 . . . . . . . . 9  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
65adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( 0g `  K
)  =  ( 0g
`  L ) )
73, 6eqeq12d 2403 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( x ( +g  `  K ) y )  =  ( 0g `  K )  <-> 
( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
87anass1rs 783 . . . . . 6  |-  ( ( ( ph  /\  y  e.  B )  /\  x  e.  B )  ->  (
( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  ( x
( +g  `  L ) y )  =  ( 0g `  L ) ) )
98rexbidva 2668 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  ( E. x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  E. x  e.  B  ( x
( +g  `  L ) y )  =  ( 0g `  L ) ) )
109ralbidva 2667 . . . 4  |-  ( ph  ->  ( A. y  e.  B  E. x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  A. y  e.  B  E. x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
111rexeqdv 2856 . . . . 5  |-  ( ph  ->  ( E. x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  E. x  e.  ( Base `  K ) ( x ( +g  `  K
) y )  =  ( 0g `  K
) ) )
121, 11raleqbidv 2861 . . . 4  |-  ( ph  ->  ( A. y  e.  B  E. x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  A. y  e.  ( Base `  K ) E. x  e.  ( Base `  K ) ( x ( +g  `  K
) y )  =  ( 0g `  K
) ) )
132rexeqdv 2856 . . . . 5  |-  ( ph  ->  ( E. x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L )  <->  E. x  e.  ( Base `  L ) ( x ( +g  `  L
) y )  =  ( 0g `  L
) ) )
142, 13raleqbidv 2861 . . . 4  |-  ( ph  ->  ( A. y  e.  B  E. x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L )  <->  A. y  e.  ( Base `  L ) E. x  e.  ( Base `  L ) ( x ( +g  `  L
) y )  =  ( 0g `  L
) ) )
1510, 12, 143bitr3d 275 . . 3  |-  ( ph  ->  ( A. y  e.  ( Base `  K
) E. x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  A. y  e.  ( Base `  L ) E. x  e.  ( Base `  L ) ( x ( +g  `  L
) y )  =  ( 0g `  L
) ) )
164, 15anbi12d 692 . 2  |-  ( ph  ->  ( ( K  e. 
Mnd  /\  A. y  e.  ( Base `  K
) E. x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) )  <->  ( L  e. 
Mnd  /\  A. y  e.  ( Base `  L
) E. x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
17 eqid 2389 . . 3  |-  ( Base `  K )  =  (
Base `  K )
18 eqid 2389 . . 3  |-  ( +g  `  K )  =  ( +g  `  K )
19 eqid 2389 . . 3  |-  ( 0g
`  K )  =  ( 0g `  K
)
2017, 18, 19isgrp 14745 . 2  |-  ( K  e.  Grp  <->  ( K  e.  Mnd  /\  A. y  e.  ( Base `  K
) E. x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )
21 eqid 2389 . . 3  |-  ( Base `  L )  =  (
Base `  L )
22 eqid 2389 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
23 eqid 2389 . . 3  |-  ( 0g
`  L )  =  ( 0g `  L
)
2421, 22, 23isgrp 14745 . 2  |-  ( L  e.  Grp  <->  ( L  e.  Mnd  /\  A. y  e.  ( Base `  L
) E. x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
2516, 20, 243bitr4g 280 1  |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2651   E.wrex 2652   ` cfv 5396  (class class class)co 6022   Basecbs 13398   +g cplusg 13458   0gc0g 13652   Mndcmnd 14613   Grpcgrp 14614
This theorem is referenced by:  grpprop  14753  ghmpropd  14972  oppggrpb  15083  ablpropd  15351  rngpropd  15624  lmodprop2d  15935  sralmod  16187  nmpropd2  18515  ngppropd  18551  tngngp2  18566  zhmnrg  24154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-iota 5360  df-fun 5398  df-fv 5404  df-ov 6025  df-0g 13656  df-mnd 14619  df-grp 14741
  Copyright terms: Public domain W3C validator